| name | agent-orchestration-planner |
| description | Designs multi-step agent workflows with tool usage, retry logic, state management, and budget controls. Provides orchestration diagrams, tool execution order, fallback strategies, and cost limits. Use for "AI agents", "agentic workflows", "multi-step AI", or "autonomous systems". |
Agent Orchestration Planner
Design robust multi-step agent systems with tools and error handling.
Agent Architecture
User Query → Planning → Tool Selection → Tool Execution → Result Synthesis → Response
↓ ↓ ↓ ↓
Memory Retry Logic Validation Cost Tracking
Agent Loop Pattern
from typing import List, Dict, Any
class Agent:
def __init__(self, tools: List[Tool], max_iterations: int = 5):
self.tools = tools
self.max_iterations = max_iterations
self.memory = []
self.cost_tracker = CostTracker()
def run(self, query: str) -> str:
self.memory.append({"role": "user", "content": query})
for iteration in range(self.max_iterations):
# Decide next action
action = self.plan_next_action()
if action["type"] == "final_answer":
return action["content"]
# Execute tool
result = self.execute_tool(action["tool"], action["params"])
# Track cost
self.cost_tracker.add(result["cost"])
# Check budget
if self.cost_tracker.exceeds_limit():
return self.budget_exceeded_response()
# Add to memory
self.memory.append({
"role": "tool",
"tool": action["tool"],
"result": result["data"]
})
return "Max iterations reached"
def plan_next_action(self) -> Dict:
prompt = self.build_planning_prompt()
response = llm(prompt)
return parse_action(response)
Tool Orchestration
TOOL_ORDER = {
"search_web": 1, # Always try search first
"query_database": 2, # Then database
"call_api": 3, # Then external APIs
"generate_content": 4, # Finally generate
}
def select_tools(query: str, available_tools: List[Tool]) -> List[Tool]:
"""Select and order tools based on query"""
# Use LLM to select relevant tools
tool_selection_prompt = f"""
Given this query: "{query}"
Which of these tools are needed? {[t.name for t in available_tools]}
Return JSON array of tool names in execution order.
"""
selected_names = json.loads(llm(tool_selection_prompt))
selected_tools = [t for t in available_tools if t.name in selected_names]
# Sort by predefined order
selected_tools.sort(key=lambda t: TOOL_ORDER.get(t.name, 999))
return selected_tools
Retry & Fallback Logic
def execute_with_retry(tool: Tool, params: Dict, max_retries: int = 3):
"""Execute tool with exponential backoff retry"""
for attempt in range(max_retries):
try:
result = tool.execute(params)
return {"success": True, "data": result}
except ToolError as e:
if attempt == max_retries - 1:
# Try fallback tool
fallback = get_fallback_tool(tool.name)
if fallback:
return execute_with_retry(fallback, params, 1)
return {"success": False, "error": str(e)}
# Wait before retry
time.sleep(2 ** attempt)
FALLBACK_TOOLS = {
"search_web": "query_database",
"call_api": "use_cached_data",
}
State Management
class AgentState:
def __init__(self):
self.memory = []
self.tool_results = {}
self.costs = 0.0
self.iteration = 0
def add_message(self, role: str, content: str):
self.memory.append({"role": role, "content": content})
def add_tool_result(self, tool_name: str, result: Any):
self.tool_results[tool_name] = result
def get_context(self) -> str:
"""Build context from memory for next LLM call"""
return "\n".join([
f"{msg['role']}: {msg['content']}"
for msg in self.memory[-5:] # Last 5 messages
])
Budget & Cost Controls
class CostTracker:
def __init__(self, max_cost: float = 1.0):
self.max_cost = max_cost
self.total_cost = 0.0
self.breakdown = {}
def add(self, cost: float, category: str = "llm"):
self.total_cost += cost
self.breakdown[category] = self.breakdown.get(category, 0) + cost
def exceeds_limit(self) -> bool:
return self.total_cost >= self.max_cost
def remaining(self) -> float:
return self.max_cost - self.total_cost
# Use in agent
if cost_tracker.exceeds_limit():
return f"Budget limit reached. Used ${cost_tracker.total_cost:.4f}"
Orchestration Diagram
graph TD
A[User Query] --> B[Plan Action]
B --> C{Action Type?}
C -->|Tool Call| D[Execute Tool]
C -->|Final Answer| E[Return Response]
D --> F[Validate Result]
F -->|Success| G[Update Memory]
F -->|Failure| H[Retry/Fallback]
H --> D
G --> I{Budget OK?}
I -->|Yes| B
I -->|No| J[Budget Exceeded]
J --> E
Planning Prompt
def build_planning_prompt(state: AgentState) -> str:
return f"""
You are an agent that can use tools to answer questions.
Available tools:
{json.dumps([t.schema for t in tools], indent=2)}
Conversation history:
{state.get_context()}
Based on the conversation, decide your next action:
1. Call a tool (specify tool name and parameters)
2. Provide final answer
If calling a tool, respond with:
{{"action": "tool_call", "tool": "tool_name", "params": {{...}}}}
If providing final answer, respond with:
{{"action": "final_answer", "content": "your answer"}}
Think step by step about what information you need.
"""
Multi-Agent Coordination
class MultiAgentSystem:
def __init__(self):
self.agents = {
"researcher": ResearchAgent(),
"coder": CodeAgent(),
"reviewer": ReviewAgent(),
}
def run(self, task: str):
# Researcher gathers information
context = self.agents["researcher"].run(task)
# Coder generates solution
code = self.agents["coder"].run(f"{task}\nContext: {context}")
# Reviewer validates
review = self.agents["reviewer"].run(f"Review this code:\n{code}")
if review["approved"]:
return code
else:
# Iterate with feedback
return self.agents["coder"].run(
f"Fix this code based on feedback:\n{review['feedback']}"
)
Best Practices
- Limit iterations: Prevent infinite loops
- Budget controls: Track and limit costs
- Tool validation: Verify tool outputs
- Error handling: Graceful fallbacks
- State persistence: Save progress
- Observability: Log all actions
- Human-in-loop: Critical decisions
Output Checklist
- Agent loop implementation
- Tool selection logic
- Retry & fallback strategies
- State management
- Cost tracking
- Budget limits
- Orchestration diagram
- Planning prompts
- Error handling
- Observability/logging