| name | doc-to-vector-dataset-generator |
| description | Converts documents into clean, chunked datasets suitable for embeddings and vector search. Produces chunked JSONL files with metadata, deduplication logic, and quality checks. Use when preparing "training data", "vector datasets", "document processing", or "embedding data". |
Doc-to-Vector Dataset Generator
Transform documents into high-quality vector search datasets.
Pipeline Steps
- Extract text from various formats (PDF, DOCX, HTML)
- Clean text (remove noise, normalize)
- Chunk strategically (semantic boundaries)
- Add metadata (source, timestamps, classification)
- Deduplicate (near-duplicate detection)
- Quality check (length, content validation)
- Export JSONL (one chunk per line)
Text Extraction
# PDF extraction
import pymupdf
def extract_pdf(filepath: str) -> str:
doc = pymupdf.open(filepath)
text = ""
for page in doc:
text += page.get_text()
return text
# Markdown extraction
def extract_markdown(filepath: str) -> str:
with open(filepath) as f:
return f.read()
Text Cleaning
import re
def clean_text(text: str) -> str:
# Remove extra whitespace
text = re.sub(r'\s+', ' ', text)
# Remove page numbers
text = re.sub(r'Page \d+', '', text)
# Remove URLs (optional)
text = re.sub(r'http\S+', '', text)
# Normalize unicode
text = text.encode('utf-8', 'ignore').decode('utf-8')
return text.strip()
Semantic Chunking
def semantic_chunk(text: str, max_chunk_size: int = 1000) -> List[str]:
"""Chunk at semantic boundaries (paragraphs, sentences)"""
# Split by paragraphs first
paragraphs = text.split('\n\n')
chunks = []
current_chunk = ""
for para in paragraphs:
if len(current_chunk) + len(para) <= max_chunk_size:
current_chunk += para + "\n\n"
else:
if current_chunk:
chunks.append(current_chunk.strip())
current_chunk = para + "\n\n"
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
Metadata Extraction
def extract_metadata(filepath: str, chunk: str, chunk_idx: int) -> dict:
return {
"source": filepath,
"chunk_id": f"{hash(filepath)}_{chunk_idx}",
"chunk_index": chunk_idx,
"char_count": len(chunk),
"word_count": len(chunk.split()),
"created_at": datetime.now().isoformat(),
# Content classification
"has_code": bool(re.search(r'```|def |class |function', chunk)),
"has_table": bool(re.search(r'\|.*\|', chunk)),
"language": detect_language(chunk),
}
Deduplication
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
def deduplicate_chunks(chunks: List[dict], threshold: float = 0.95) -> List[dict]:
"""Remove near-duplicate chunks"""
texts = [c["text"] for c in chunks]
# Compute TF-IDF vectors
vectorizer = TfidfVectorizer()
vectors = vectorizer.fit_transform(texts)
# Compute pairwise similarity
similarity_matrix = cosine_similarity(vectors)
# Find duplicates
to_remove = set()
for i in range(len(chunks)):
if i in to_remove:
continue
for j in range(i+1, len(chunks)):
if similarity_matrix[i][j] > threshold:
to_remove.add(j)
# Return unique chunks
return [c for i, c in enumerate(chunks) if i not in to_remove]
Quality Checks
def quality_check(chunk: dict) -> bool:
"""Validate chunk quality"""
text = chunk["text"]
# Min length check
if len(text) < 50:
return False
# Max length check
if len(text) > 5000:
return False
# Content check (not just numbers/symbols)
alpha_ratio = sum(c.isalpha() for c in text) / len(text)
if alpha_ratio < 0.5:
return False
# Language check (English only)
if chunk["metadata"]["language"] != "en":
return False
return True
JSONL Export
import json
def export_jsonl(chunks: List[dict], output_path: str):
"""Export chunks as JSONL (one JSON object per line)"""
with open(output_path, 'w') as f:
for chunk in chunks:
f.write(json.dumps(chunk) + '\n')
# Example output format
{
"text": "Chunk text content here...",
"metadata": {
"source": "docs/auth.md",
"chunk_id": "abc123_0",
"chunk_index": 0,
"char_count": 542,
"word_count": 89,
"has_code": true
}
}
Complete Pipeline
def process_documents(input_dir: str, output_path: str):
all_chunks = []
# Process each document
for filepath in glob(f"{input_dir}/**/*.md"):
# Extract and clean
text = extract_markdown(filepath)
text = clean_text(text)
# Chunk
chunks = semantic_chunk(text)
# Add metadata
for i, chunk in enumerate(chunks):
chunk_obj = {
"text": chunk,
"metadata": extract_metadata(filepath, chunk, i)
}
# Quality check
if quality_check(chunk_obj):
all_chunks.append(chunk_obj)
# Deduplicate
unique_chunks = deduplicate_chunks(all_chunks)
# Export
export_jsonl(unique_chunks, output_path)
print(f"Processed {len(unique_chunks)} chunks")
Best Practices
- Chunk at semantic boundaries
- Rich metadata for filtering
- Deduplicate aggressively
- Quality checks prevent garbage
- JSONL format for streaming
- Version your datasets
Output Checklist
- Text extraction from all formats
- Cleaning pipeline implemented
- Semantic chunking strategy
- Metadata schema defined
- Deduplication logic
- Quality validation checks
- JSONL export format
- Dataset statistics logged