Claude Code Plugins

Community-maintained marketplace

Feedback

observability-setup

@patricio0312rev/skillset
2
0

Implements comprehensive observability with OpenTelemetry tracing, Prometheus metrics, and structured logging. Includes instrumentation plans, sample dashboards, and alert candidates. Use for "observability", "monitoring", "tracing", or "metrics".

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name observability-setup
description Implements comprehensive observability with OpenTelemetry tracing, Prometheus metrics, and structured logging. Includes instrumentation plans, sample dashboards, and alert candidates. Use for "observability", "monitoring", "tracing", or "metrics".

Observability Setup

Implement the three pillars: Traces, Metrics, and Logs.

OpenTelemetry Tracing

// tracing.ts
import { NodeTracerProvider } from "@opentelemetry/sdk-trace-node";
import { Resource } from "@opentelemetry/resources";
import { SemanticResourceAttributes } from "@opentelemetry/semantic-conventions";
import { registerInstrumentations } from "@opentelemetry/instrumentation";
import { HttpInstrumentation } from "@opentelemetry/instrumentation-http";
import { ExpressInstrumentation } from "@opentelemetry/instrumentation-express";
import { PrismaInstrumentation } from "@prisma/instrumentation";

const provider = new NodeTracerProvider({
  resource: new Resource({
    [SemanticResourceAttributes.SERVICE_NAME]: "my-api",
    [SemanticResourceAttributes.SERVICE_VERSION]: "1.0.0",
  }),
});

registerInstrumentations({
  instrumentations: [
    new HttpInstrumentation(),
    new ExpressInstrumentation(),
    new PrismaInstrumentation(),
  ],
});

provider.register();

// Custom spans
import { trace } from "@opentelemetry/api";

const tracer = trace.getTracer("my-app");

async function processOrder(orderId: string) {
  const span = tracer.startSpan("processOrder");
  span.setAttribute("order.id", orderId);

  try {
    await validateOrder(orderId);
    await chargePayment(orderId);
    await fulfillOrder(orderId);
    span.setStatus({ code: 0 }); // OK
  } catch (error) {
    span.setStatus({ code: 2, message: error.message }); // ERROR
    throw error;
  } finally {
    span.end();
  }
}

Prometheus Metrics

// metrics.ts
import { Registry, Counter, Histogram, Gauge } from "prom-client";

const register = new Registry();

// HTTP request counter
export const httpRequestCounter = new Counter({
  name: "http_requests_total",
  help: "Total HTTP requests",
  labelNames: ["method", "route", "status_code"],
  registers: [register],
});

// HTTP request duration
export const httpRequestDuration = new Histogram({
  name: "http_request_duration_seconds",
  help: "HTTP request duration in seconds",
  labelNames: ["method", "route", "status_code"],
  buckets: [0.1, 0.5, 1, 2, 5, 10],
  registers: [register],
});

// Active connections
export const activeConnections = new Gauge({
  name: "active_connections",
  help: "Number of active connections",
  registers: [register],
});

// Business metrics
export const ordersProcessed = new Counter({
  name: "orders_processed_total",
  help: "Total orders processed",
  labelNames: ["status"],
  registers: [register],
});

// Middleware
app.use((req, res, next) => {
  const start = Date.now();

  res.on("finish", () => {
    const duration = (Date.now() - start) / 1000;
    const route = req.route?.path || "unknown";

    httpRequestCounter.inc({
      method: req.method,
      route,
      status_code: res.statusCode,
    });

    httpRequestDuration.observe(
      { method: req.method, route, status_code: res.statusCode },
      duration
    );
  });

  next();
});

// Metrics endpoint
app.get("/metrics", async (req, res) => {
  res.set("Content-Type", register.contentType);
  res.end(await register.metrics());
});

Structured Logging

// logger.ts
import pino from "pino";

export const logger = pino({
  level: process.env.LOG_LEVEL || "info",
  formatters: {
    level: (label) => ({ level: label }),
  },
  base: {
    service: "my-api",
    environment: process.env.NODE_ENV,
  },
});

// Usage
logger.info({ userId: "123", action: "login" }, "User logged in");
logger.error({ err: error, orderId: "456" }, "Order processing failed");

Sample Dashboard (Grafana)

{
  "dashboard": {
    "title": "API Overview",
    "panels": [
      {
        "title": "Request Rate",
        "targets": [{
          "expr": "rate(http_requests_total[5m])"
        }]
      },
      {
        "title": "Error Rate",
        "targets": [{
          "expr": "rate(http_requests_total{status_code=~"5.."}[5m])"
        }]
      },
      {
        "title": "p95 Latency",
        "targets": [{
          "expr": "histogram_quantile(0.95, rate(http_request_duration_seconds_bucket[5m]))"
        }]
      },
      {
        "title": "Active Connections",
        "targets": [{
          "expr": "active_connections"
        }]
      }
    ]
  }
}

Alert Candidates

# alerts.yml
groups:
  - name: api_alerts
    interval: 30s
    rules:
      - alert: HighErrorRate
        expr: rate(http_requests_total{status_code=~"5.."}[5m]) > 0.05
        for: 5m
        labels:
          severity: critical
        annotations:
          summary: "High error rate detected"

      - alert: HighLatency
        expr: histogram_quantile(0.95, rate(http_request_duration_seconds_bucket[5m])) > 2
        for: 10m
        labels:
          severity: warning
        annotations:
          summary: "p95 latency above 2s"

      - alert: LowAvailability
        expr: rate(http_requests_total{status_code="200"}[5m]) / rate(http_requests_total[5m]) < 0.95
        for: 5m
        labels:
          severity: critical
        annotations:
          summary: "Availability below 95%"

Output Checklist

  • OpenTelemetry tracing configured
  • Prometheus metrics instrumented
  • Structured logging implemented
  • Sample dashboards created
  • Alert rules defined
  • Metrics endpoint exposed
  • Instrumentation tested ENDFILE