| name | sql-query-optimizer |
| description | Analyzes and optimizes SQL queries using EXPLAIN plans, index recommendations, query rewrites, and performance benchmarking. Use for "query optimization", "slow queries", "database performance", or "EXPLAIN analysis". |
SQL Query Optimizer
Optimize SQL queries for maximum performance.
EXPLAIN Analysis
-- Original slow query
EXPLAIN ANALYZE
SELECT u.*, COUNT(o.id) as order_count
FROM users u
LEFT JOIN orders o ON o.user_id = u.id
WHERE u.created_at > '2024-01-01'
GROUP BY u.id
ORDER BY order_count DESC
LIMIT 10;
-- Output analysis:
/*
Sort (cost=15234.32..15234.34 rows=10 width=120) (actual time=245.123..245.125 rows=10 loops=1)
Sort Key: (count(o.id)) DESC
-> HashAggregate (cost=15000.00..15100.00 rows=1000 width=120) (actual time=244.891..245.023 rows=1000 loops=1)
Group Key: u.id
-> Hash Left Join (cost=1234.56..14500.00 rows=50000 width=112) (actual time=12.345..230.456 rows=50000 loops=1)
Hash Cond: (o.user_id = u.id)
-> Seq Scan on orders o (cost=0.00..10000.00 rows=100000 width=8) (actual time=0.012..180.234 rows=100000 loops=1)
-> Hash (cost=1000.00..1000.00 rows=5000 width=112) (actual time=10.234..10.234 rows=5000 loops=1)
Buckets: 8192 Batches: 1 Memory Usage: 456kB
-> Seq Scan on users u (cost=0.00..1000.00 rows=5000 width=112) (actual time=0.008..5.123 rows=5000 loops=1)
Filter: (created_at > '2024-01-01'::date)
Rows Removed by Filter: 1000
Planning Time: 0.234 ms
Execution Time: 245.234 ms
*/
-- Issues identified:
-- 1. Seq Scan on orders (no index on user_id)
-- 2. Seq Scan on users (no index on created_at)
-- 3. Full table scans expensive
Index Recommendations
-- Problem: Sequential scans
EXPLAIN ANALYZE
SELECT * FROM orders WHERE user_id = 123;
/*
Seq Scan on orders (cost=0.00..10000.00 rows=50 width=100) (actual time=0.012..89.456 rows=50 loops=1)
Filter: (user_id = 123)
Rows Removed by Filter: 99950
*/
-- Solution: Add index
CREATE INDEX idx_orders_user_id ON orders(user_id);
-- After index:
/*
Index Scan using idx_orders_user_id on orders (cost=0.29..45.32 rows=50 width=100) (actual time=0.023..0.089 rows=50 loops=1)
Index Cond: (user_id = 123)
*/
-- Performance: 89ms → 0.09ms (990x faster!)
Query Rewrites
1. Avoid SELECT *
-- ❌ Bad: Fetches all columns
SELECT * FROM users WHERE id = 123;
-- ✅ Good: Fetch only needed columns
SELECT id, email, name FROM users WHERE id = 123;
-- Performance: 50% faster, less network transfer
2. Use EXISTS Instead of IN
-- ❌ Slow: Subquery executed fully
SELECT * FROM users
WHERE id IN (SELECT user_id FROM orders WHERE total > 100);
-- ✅ Fast: Short-circuits on first match
SELECT * FROM users u
WHERE EXISTS (
SELECT 1 FROM orders o
WHERE o.user_id = u.id AND o.total > 100
);
-- Performance: 3x faster on large datasets
3. Avoid Functions on Indexed Columns
-- ❌ Bad: Index not used
SELECT * FROM users WHERE LOWER(email) = 'john@example.com';
-- ✅ Good: Index scan possible
SELECT * FROM users WHERE email = 'john@example.com';
-- Or create functional index:
CREATE INDEX idx_users_email_lower ON users(LOWER(email));
4. Use Covering Indexes
-- Query needs: id, email, name
SELECT id, email, name FROM users WHERE email = 'john@example.com';
-- Create covering index (includes all needed columns)
CREATE INDEX idx_users_email_covering ON users(email) INCLUDE (id, name);
-- Result: Index-only scan (no table access needed)
5. Optimize JOIN Order
-- ❌ Bad: Large table first
SELECT * FROM orders o
JOIN users u ON u.id = o.user_id
WHERE u.email = 'john@example.com';
-- ✅ Good: Filter first, join second
SELECT * FROM users u
JOIN orders o ON o.user_id = u.id
WHERE u.email = 'john@example.com';
-- Or use CTE for clarity:
WITH filtered_users AS (
SELECT id FROM users WHERE email = 'john@example.com'
)
SELECT o.* FROM orders o
JOIN filtered_users u ON u.id = o.user_id;
Composite Indexes
-- Query pattern: WHERE user_id = X AND status = 'active' ORDER BY created_at DESC
CREATE INDEX idx_orders_user_status_created
ON orders(user_id, status, created_at DESC);
-- Index column order matters!
-- Rule: Equality filters → Range filters → Sort columns
-- Example queries that use this index:
-- 1. SELECT * FROM orders WHERE user_id = 123; ✅
-- 2. SELECT * FROM orders WHERE user_id = 123 AND status = 'active'; ✅
-- 3. SELECT * FROM orders WHERE user_id = 123 ORDER BY created_at DESC; ✅
-- 4. SELECT * FROM orders WHERE status = 'active'; ❌ (doesn't start with user_id)
Query Performance Benchmarking
// scripts/benchmark-queries.ts
import { PrismaClient } from "@prisma/client";
import { performance } from "perf_hooks";
const prisma = new PrismaClient();
async function benchmarkQuery(
name: string,
query: () => Promise<any>,
iterations: number = 10
) {
const times: number[] = [];
for (let i = 0; i < iterations; i++) {
const start = performance.now();
await query();
const end = performance.now();
times.push(end - start);
}
const avg = times.reduce((a, b) => a + b, 0) / times.length;
const min = Math.min(...times);
const max = Math.max(...times);
console.log(`\n${name}:`);
console.log(` Avg: ${avg.toFixed(2)}ms`);
console.log(` Min: ${min.toFixed(2)}ms`);
console.log(` Max: ${max.toFixed(2)}ms`);
return { avg, min, max };
}
// Compare queries
async function compareQueries() {
console.log("🔍 Benchmarking queries...\n");
// Query 1: Original
const result1 = await benchmarkQuery("Original Query", async () => {
return prisma.$queryRaw`
SELECT u.*, COUNT(o.id) as order_count
FROM users u
LEFT JOIN orders o ON o.user_id = u.id
GROUP BY u.id
LIMIT 10
`;
});
// Query 2: Optimized
const result2 = await benchmarkQuery("Optimized Query", async () => {
return prisma.$queryRaw`
SELECT u.id, u.email, u.name,
(SELECT COUNT(*) FROM orders WHERE user_id = u.id) as order_count
FROM users u
LIMIT 10
`;
});
// Comparison
const improvement = (
((result1.avg - result2.avg) / result1.avg) *
100
).toFixed(1);
console.log(`\n📊 Improvement: ${improvement}% faster`);
}
compareQueries();
Query Optimization Checklist
interface QueryOptimization {
query: string;
issues: string[];
recommendations: string[];
estimatedImprovement: string;
}
const optimizations: QueryOptimization[] = [
{
query: "SELECT * FROM orders WHERE user_id = $1",
issues: [
"Missing index on user_id",
"SELECT * fetches unnecessary columns",
],
recommendations: [
"CREATE INDEX idx_orders_user_id ON orders(user_id)",
"SELECT id, total, status instead of *",
],
estimatedImprovement: "90% faster",
},
{
query: "SELECT COUNT(*) FROM orders",
issues: ["Full table scan", "No WHERE clause filtering"],
recommendations: [
"Add WHERE clause to filter rows",
"Consider approximate count for large tables",
],
estimatedImprovement: "70% faster",
},
];
Automated Slow Query Detection
// scripts/detect-slow-queries.ts
async function detectSlowQueries() {
// Enable slow query logging in PostgreSQL
await prisma.$executeRaw`
ALTER DATABASE mydb SET log_min_duration_statement = 100;
`;
// Query pg_stat_statements for slow queries
const slowQueries = await prisma.$queryRaw<any[]>`
SELECT
query,
calls,
total_exec_time / 1000 as total_time_seconds,
mean_exec_time / 1000 as mean_time_ms,
max_exec_time / 1000 as max_time_ms
FROM pg_stat_statements
WHERE mean_exec_time > 100 -- > 100ms
ORDER BY mean_exec_time DESC
LIMIT 20
`;
console.log("🐌 Slow Queries Detected:\n");
slowQueries.forEach((q, i) => {
console.log(`${i + 1}. ${q.query.substring(0, 80)}...`);
console.log(` Calls: ${q.calls}`);
console.log(` Avg: ${q.mean_time_ms.toFixed(2)}ms`);
console.log(` Max: ${q.max_time_ms.toFixed(2)}ms\n`);
});
}
Best Practices
- Always use EXPLAIN: Understand query plans
- Index foreign keys: Essential for joins
- Avoid SELECT *: Fetch only needed columns
- Use composite indexes: Multi-column queries
- Consider covering indexes: Eliminate table access
- Batch operations: Reduce round trips
- Monitor regularly: Track slow queries
Output Checklist
- EXPLAIN plan analyzed
- Missing indexes identified
- Query rewrite suggestions
- Performance benchmarks
- Before/after metrics
- Index creation scripts
- Slow query monitoring
- Optimization priority list