Claude Code Plugins

Community-maintained marketplace

Feedback

Implement agent memory - short-term, long-term, semantic storage, and retrieval

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name agent-memory
description Implement agent memory - short-term, long-term, semantic storage, and retrieval
sasmp_version 1.3.0
bonded_agent 06-agent-memory
bond_type PRIMARY_BOND
version 2.0.0

Agent Memory

Give agents the ability to remember and learn across conversations.

When to Use This Skill

Invoke this skill when:

  • Adding conversation history
  • Implementing long-term memory
  • Building personalized agents
  • Managing context windows

Parameter Schema

Parameter Type Required Description Default
task string Yes Memory goal -
memory_type enum No buffer, summary, vector, hybrid hybrid
persistence enum No session, user, global session

Quick Start

from langchain.memory import ConversationBufferWindowMemory

# Simple buffer (last k messages)
memory = ConversationBufferWindowMemory(k=10)

# With summarization
from langchain.memory import ConversationSummaryBufferMemory
memory = ConversationSummaryBufferMemory(llm=llm, max_token_limit=2000)

# Vector store memory
from langchain.memory import VectorStoreRetrieverMemory
memory = VectorStoreRetrieverMemory(retriever=vectorstore.as_retriever())

Memory Types

Type Use Case Pros Cons
Buffer Short chats Simple No compression
Summary Long chats Compact Loses detail
Vector Semantic recall Relevant Slower
Hybrid Production Best of all Complex

Multi-Layer Architecture

class ProductionMemory:
    def __init__(self):
        self.short_term = BufferMemory(k=10)    # Recent
        self.summary = SummaryMemory()           # Compressed
        self.long_term = VectorMemory()          # Semantic

Troubleshooting

Issue Solution
Context overflow Add summarization
Slow retrieval Cache, reduce k
Irrelevant recall Improve embeddings
Memory not persisting Check storage backend

Best Practices

  • Use multi-layer memory for production
  • Set token limits to prevent overflow
  • Add metadata (timestamps, importance)
  • Implement TTL for old memories

Related Skills

  • rag-systems - Vector retrieval
  • llm-integration - Context management
  • ai-agent-basics - Agent architecture

References