Claude Code Plugins

Community-maintained marketplace

Feedback

Master AI agent fundamentals - architectures, ReAct patterns, cognitive loops, and autonomous system design

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name ai-agent-basics
description Master AI agent fundamentals - architectures, ReAct patterns, cognitive loops, and autonomous system design
sasmp_version 1.3.0
bonded_agent 01-ai-agent-fundamentals
bond_type PRIMARY_BOND
version 2.0.0

AI Agent Basics

Build production-grade AI agents with modern architectures and patterns.

When to Use This Skill

Invoke this skill when:

  • Designing new AI agent systems
  • Implementing ReAct or Plan-and-Execute patterns
  • Building autonomous task-solving agents
  • Integrating cognitive loops into applications

Parameter Schema

Parameter Type Required Description Default
task string Yes What agent capability to build -
architecture enum No single, multi, hybrid single
framework enum No langchain, langgraph, custom langgraph
complexity enum No basic, intermediate, advanced intermediate

Quick Start

# Basic ReAct Agent
from langgraph.prebuilt import create_react_agent
from langchain_anthropic import ChatAnthropic

llm = ChatAnthropic(model="claude-sonnet-4-20250514")
agent = create_react_agent(llm, tools=[search, calculator])
result = await agent.ainvoke({"messages": [("user", "What is 25 * 4?")]})

Core Patterns

1. ReAct Agent

# Thought → Action → Observation loop
graph = StateGraph(AgentState)
graph.add_node("think", reason_node)
graph.add_node("act", action_node)
graph.add_node("observe", observation_node)

2. Plan-and-Execute

# Create plan → Execute steps → Verify
planner = create_planner(llm)
executor = create_executor(llm, tools)

3. Reflexion

# Execute → Reflect → Improve
agent_with_reflection = add_reflection_layer(base_agent)

Troubleshooting

Issue Solution
Agent loops forever Add max_iterations limit
Wrong tool selected Improve tool descriptions
Context too large Implement summarization
Slow responses Use streaming

Best Practices

  • Start with simple single-agent before multi-agent
  • Always add circuit breakers (max iterations)
  • Use verbose mode for debugging
  • Implement human-in-the-loop for critical decisions

Related Skills

  • llm-integration - LLM API configuration
  • tool-calling - Function calling implementation
  • agent-memory - Memory systems

References