| name | llm-integration |
| description | Integrate LLMs into applications - APIs, prompting, fine-tuning, and context management |
| sasmp_version | 1.3.0 |
| bonded_agent | 02-llm-integration |
| bond_type | PRIMARY_BOND |
| version | 2.0.0 |
LLM Integration
Integrate Large Language Models with production-grade reliability.
When to Use This Skill
Invoke this skill when:
- Connecting to Claude, OpenAI, or other LLM APIs
- Designing effective prompts and system messages
- Optimizing token usage and costs
- Implementing streaming responses
Parameter Schema
| Parameter |
Type |
Required |
Description |
Default |
provider |
enum |
Yes |
anthropic, openai, google, local |
- |
task |
string |
Yes |
Integration goal |
- |
streaming |
bool |
No |
Enable streaming |
true |
max_tokens |
int |
No |
Response token limit |
4096 |
Quick Start
# Anthropic Claude
from anthropic import Anthropic
client = Anthropic()
response = client.messages.create(
model="claude-sonnet-4-20250514",
max_tokens=1024,
messages=[{"role": "user", "content": "Hello!"}]
)
# OpenAI
from openai import OpenAI
client = OpenAI()
response = client.chat.completions.create(
model="gpt-4-turbo",
messages=[{"role": "user", "content": "Hello!"}]
)
Prompt Templates
System Prompt
SYSTEM = """You are {role}, an expert in {domain}.
Your task: {task}
Constraints: {constraints}
Output format: {format}"""
Chain-of-Thought
COT = """Think step by step:
1. Understand the problem
2. Break it down
3. Solve each part
4. Combine results"""
Cost Optimization
| Model |
Input $/1M |
Output $/1M |
Best For |
| Claude Haiku |
$0.25 |
$1.25 |
High volume |
| Claude Sonnet |
$3 |
$15 |
Complex tasks |
| Claude Opus |
$15 |
$75 |
Most demanding |
Troubleshooting
| Issue |
Solution |
| 429 Rate Limited |
Exponential backoff |
| Context overflow |
Truncate/summarize |
| Poor output quality |
Add examples, lower temp |
| High costs |
Use cheaper model, cache |
Best Practices
- Always implement retry with backoff
- Use streaming for better UX
- Cache repeated queries
- Monitor token usage
Related Skills
ai-agent-basics - Agent architecture
rag-systems - Retrieval augmentation
tool-calling - Function calling
References