Claude Code Plugins

Community-maintained marketplace

Feedback

Build RAG systems - embeddings, vector stores, chunking, and retrieval optimization

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name rag-systems
description Build RAG systems - embeddings, vector stores, chunking, and retrieval optimization
sasmp_version 1.3.0
bonded_agent 03-rag-systems
bond_type PRIMARY_BOND
version 2.0.0

RAG Systems

Build Retrieval-Augmented Generation systems for grounded responses.

When to Use This Skill

Invoke this skill when:

  • Building Q&A over custom documents
  • Implementing semantic search
  • Setting up vector databases
  • Optimizing retrieval quality

Parameter Schema

Parameter Type Required Description Default
task string Yes RAG goal -
vector_db enum No pinecone, weaviate, chroma, pgvector chroma
embedding_model string No Embedding model text-embedding-3-small
chunk_size int No Chunk size in chars 1000

Quick Start

from langchain_openai import OpenAIEmbeddings
from langchain_chroma import Chroma
from langchain_text_splitters import RecursiveCharacterTextSplitter

# 1. Split documents
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = splitter.split_documents(documents)

# 2. Create vector store
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
vectorstore = Chroma.from_documents(chunks, embeddings)

# 3. Retrieve
docs = vectorstore.similarity_search("query", k=5)

Chunking Strategy

Content Type Size Overlap Rationale
Technical docs 500-800 100 Preserve code
Legal docs 1000-1500 200 Keep clauses
Q&A/FAQ 200-400 50 Atomic answers

Embedding Costs

Model Cost/1M tokens
text-embedding-3-small $0.02
text-embedding-3-large $0.13
Cohere embed-v3 $0.10

Troubleshooting

Issue Solution
Irrelevant results Improve chunking, add reranking
Missing context Increase k, use parent retriever
Hallucinations Add "only use context" prompt
Slow retrieval Add caching, reduce k

Best Practices

  • Always include source attribution
  • Use hybrid search (dense + BM25)
  • Implement reranking for quality
  • Evaluate with RAGAS metrics

Related Skills

  • llm-integration - LLM for generation
  • agent-memory - Memory retrieval
  • ai-agent-basics - Agentic RAG

References