Claude Code Plugins

Community-maintained marketplace

Feedback

ETL pipelines, Apache Spark, data warehousing, and big data processing. Use for building data pipelines, processing large datasets, or data infrastructure.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name data-engineering
description ETL pipelines, Apache Spark, data warehousing, and big data processing. Use for building data pipelines, processing large datasets, or data infrastructure.
sasmp_version 1.3.0
bonded_agent 03-data-engineering
bond_type PRIMARY_BOND

Data Engineering

Build scalable data pipelines and infrastructure for big data processing.

Quick Start with Apache Spark

from pyspark.sql import SparkSession
from pyspark.sql.functions import col, avg, sum, count

# Initialize Spark
spark = SparkSession.builder \
    .appName("DataProcessing") \
    .config("spark.executor.memory", "4g") \
    .getOrCreate()

# Read data
df = spark.read.parquet("s3://bucket/data/")

# Transformations (lazy evaluation)
df_clean = df \
    .filter(col("value") > 0) \
    .groupBy("category") \
    .agg(
        sum("sales").alias("total_sales"),
        avg("price").alias("avg_price"),
        count("*").alias("count")
    ) \
    .orderBy(col("total_sales").desc())

# Write results
df_clean.write \
    .mode("overwrite") \
    .partitionBy("date") \
    .parquet("s3://bucket/output/")

ETL Pipeline with Apache Airflow

from airflow import DAG
from airflow.operators.python import PythonOperator
from datetime import datetime, timedelta

default_args = {
    'owner': 'data-team',
    'depends_on_past': False,
    'start_date': datetime(2024, 1, 1),
    'email_on_failure': True,
    'retries': 3,
    'retry_delay': timedelta(minutes=5),
}

dag = DAG(
    'etl_pipeline',
    default_args=default_args,
    schedule_interval='@daily',
    catchup=False
)

def extract(**context):
    # Extract data from source
    data = fetch_api_data()
    context['task_instance'].xcom_push(key='raw_data', value=data)

def transform(**context):
    # Transform data
    data = context['task_instance'].xcom_pull(key='raw_data')
    cleaned = clean_and_transform(data)
    context['task_instance'].xcom_push(key='clean_data', value=cleaned)

def load(**context):
    # Load to data warehouse
    data = context['task_instance'].xcom_pull(key='clean_data')
    load_to_warehouse(data)

extract_task = PythonOperator(
    task_id='extract',
    python_callable=extract,
    dag=dag
)

transform_task = PythonOperator(
    task_id='transform',
    python_callable=transform,
    dag=dag
)

load_task = PythonOperator(
    task_id='load',
    python_callable=load,
    dag=dag
)

extract_task >> transform_task >> load_task

Data Warehousing

Star Schema Design

-- Fact Table
CREATE TABLE fact_sales (
    sale_id SERIAL PRIMARY KEY,
    date_key INT REFERENCES dim_date(date_key),
    product_key INT REFERENCES dim_product(product_key),
    customer_key INT REFERENCES dim_customer(customer_key),
    quantity INT,
    revenue DECIMAL(10,2),
    cost DECIMAL(10,2)
);

-- Dimension Table
CREATE TABLE dim_product (
    product_key INT PRIMARY KEY,
    product_id VARCHAR(50),
    product_name VARCHAR(200),
    category VARCHAR(100),
    brand VARCHAR(100)
);

Snowflake Data Warehouse

-- Create warehouse
CREATE WAREHOUSE compute_wh
    WAREHOUSE_SIZE = 'MEDIUM'
    AUTO_SUSPEND = 300
    AUTO_RESUME = TRUE;

-- Load data from S3
COPY INTO sales_table
FROM 's3://bucket/data/'
FILE_FORMAT = (TYPE = 'PARQUET')
ON_ERROR = 'CONTINUE';

-- Clustering
ALTER TABLE sales CLUSTER BY (date, region);

-- Time travel
SELECT * FROM sales AT (OFFSET => -3600);  -- 1 hour ago

Big Data Processing

Spark SQL

# Register as temp view
df.createOrReplaceTempView("sales")

# SQL queries
result = spark.sql("""
    SELECT
        category,
        SUM(sales) as total_sales,
        AVG(price) as avg_price
    FROM sales
    WHERE date >= '2024-01-01'
    GROUP BY category
    HAVING SUM(sales) > 10000
    ORDER BY total_sales DESC
""")

result.show()

Spark Optimization

# Cache in memory
df.cache()

# Repartition
df.repartition(200)

# Broadcast small tables
from pyspark.sql.functions import broadcast
result = large_df.join(broadcast(small_df), "key")

# Persist
from pyspark.storagelevel import StorageLevel
df.persist(StorageLevel.MEMORY_AND_DISK)

Stream Processing with Kafka

from kafka import KafkaProducer, KafkaConsumer
import json

# Producer
producer = KafkaProducer(
    bootstrap_servers=['localhost:9092'],
    value_serializer=lambda v: json.dumps(v).encode('utf-8')
)

producer.send('topic-name', {'key': 'value'})

# Consumer
consumer = KafkaConsumer(
    'topic-name',
    bootstrap_servers=['localhost:9092'],
    value_deserializer=lambda m: json.loads(m.decode('utf-8')),
    group_id='my-group',
    auto_offset_reset='earliest'
)

for message in consumer:
    process_message(message.value)

Data Quality Validation

import great_expectations as ge

# Load data
df = ge.read_csv('data.csv')

# Define expectations
df.expect_column_values_to_not_be_null('user_id')
df.expect_column_values_to_be_unique('email')
df.expect_column_values_to_be_between('age', 0, 120)
df.expect_column_values_to_match_regex(
    'email',
    r'^[\w\.-]+@[\w\.-]+\.\w+$'
)

# Validate
results = df.validate()
print(results)

Delta Lake (Data Lakehouse)

from delta.tables import DeltaTable

# Write to Delta
df.write.format("delta") \
    .mode("overwrite") \
    .save("/path/to/delta-table")

# Read from Delta
df = spark.read.format("delta").load("/path/to/delta-table")

# ACID transactions
deltaTable = DeltaTable.forPath(spark, "/path/to/delta-table")

# Upsert (merge)
deltaTable.alias("target") \
    .merge(
        updates.alias("source"),
        "target.id = source.id"
    ) \
    .whenMatchedUpdate(set={"value": "source.value"}) \
    .whenNotMatchedInsert(
        values={"id": "source.id", "value": "source.value"}
    ) \
    .execute()

# Time travel
df = spark.read.format("delta") \
    .option("versionAsOf", 10) \
    .load("/path/to/delta-table")

Best Practices

  1. Incremental processing: Process only new data
  2. Idempotency: Same input produces same output
  3. Data validation: Check quality at every stage
  4. Monitoring: Track pipeline health and performance
  5. Error handling: Retry logic, dead letter queues
  6. Partitioning: Partition large datasets by date/category
  7. Compression: Use Parquet, ORC for storage efficiency