Claude Code Plugins

Community-maintained marketplace

Feedback

Optimize application performance through caching strategies, load balancing, database scaling, and monitoring. Build systems handling thousands of concurrent users.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name performance
description Optimize application performance through caching strategies, load balancing, database scaling, and monitoring. Build systems handling thousands of concurrent users.
sasmp_version 2.0.0
bonded_agent caching-performance-agent
bond_type PRIMARY_BOND
atomic_operations BOTTLENECK_ANALYSIS, CACHE_IMPLEMENTATION, LOAD_BALANCING_CONFIG, SCALING_STRATEGY
parameter_validation [object Object]
retry_logic [object Object]
logging_hooks [object Object]
exit_codes [object Object]

Performance Optimization Skill

Bonded to: caching-performance-agent


Quick Start

# Invoke performance skill
"My API is slow, help me optimize it"
"Set up Redis caching for my application"
"Configure load balancing for high availability"

Instructions

  1. Identify Bottlenecks: Profile application, analyze metrics
  2. Choose Strategy: Select caching, scaling, or optimization approach
  3. Implement Cache: Set up Redis/Memcached with appropriate pattern
  4. Configure Scaling: Horizontal or vertical based on needs
  5. Monitor Results: Set up APM and track improvements

Caching Patterns

Pattern Use Case Consistency Complexity
Cache-Aside Read-heavy, tolerates stale Eventual Low
Write-Through Write-heavy, needs consistency Strong Medium
Write-Behind High throughput writes Eventual High
Refresh-Ahead Predictable access Strong Medium

Decision Tree

Performance Issue?
    │
    ├─→ High latency → Check database queries
    │     ├─→ Slow queries → Add indexes, optimize SQL
    │     └─→ Network → Add caching, reduce round-trips
    │
    ├─→ High CPU → Profile code
    │     ├─→ Algorithmic → Optimize algorithms
    │     └─→ Too much load → Scale horizontally
    │
    └─→ Memory issues → Analyze memory usage
          ├─→ Leaks → Find and fix leaks
          └─→ Large data → Implement pagination, streaming

Examples

Example 1: Redis Cache-Aside

import redis
import json
from functools import wraps

r = redis.Redis(host='localhost', port=6379, decode_responses=True)

def cache(ttl_seconds=3600):
    def decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            cache_key = f"{func.__name__}:{args}:{kwargs}"
            cached = r.get(cache_key)
            if cached:
                return json.loads(cached)

            result = func(*args, **kwargs)
            r.setex(cache_key, ttl_seconds, json.dumps(result))
            return result
        return wrapper
    return decorator

@cache(ttl_seconds=300)
def get_expensive_data(user_id: str) -> dict:
    # Expensive database query or computation
    return {"user_id": user_id, "data": "..."}

Example 2: Connection Pooling

from sqlalchemy import create_engine

engine = create_engine(
    DATABASE_URL,
    pool_size=20,
    max_overflow=10,
    pool_timeout=30,
    pool_recycle=1800,
    pool_pre_ping=True
)

Example 3: Load Balancing (nginx)

upstream backend {
    least_conn;  # Least connections algorithm
    server backend1:8000 weight=3;
    server backend2:8000 weight=2;
    server backend3:8000 weight=1;

    keepalive 32;  # Connection pooling
}

server {
    location /api {
        proxy_pass http://backend;
        proxy_http_version 1.1;
        proxy_set_header Connection "";
    }
}

Performance Metrics

Latency Targets:
├── P50: < 50ms   (typical request)
├── P95: < 200ms  (most requests)
├── P99: < 500ms  (almost all)
└── P99.9: < 1s   (worst case)

Cache Metrics:
├── Hit Ratio: > 90% (ideal)
├── Eviction Rate: Low (stable)
└── Memory Usage: < 80% (headroom)

Database Metrics:
├── Connection Pool: < 80% utilized
├── Query Time: P95 < 100ms
└── Slow Queries: < 1% of total

Troubleshooting

Common Issues

Issue Cause Solution
High cache miss Poor key design Review key patterns
Cache stampede Many misses at once Use locks or jitter
Memory pressure Over-caching Set TTL, eviction policy
Connection timeout Pool exhausted Increase pool size

Debug Commands

# Redis stats
redis-cli INFO stats | grep -E 'keyspace|hits|misses'

# Memory usage
redis-cli INFO memory | grep used_memory_human

# Slow queries
redis-cli SLOWLOG GET 10

# Load test
wrk -t12 -c400 -d30s http://localhost/api

Test Template

# tests/test_performance.py
import pytest
import time

class TestCachePerformance:
    def test_cache_hit_is_fast(self, redis_client):
        # First call - cache miss
        start = time.time()
        result1 = get_cached_data("key1")
        cold_time = time.time() - start

        # Second call - cache hit
        start = time.time()
        result2 = get_cached_data("key1")
        warm_time = time.time() - start

        assert warm_time < cold_time * 0.1  # 10x faster
        assert result1 == result2

    def test_cache_ttl_expires(self, redis_client):
        set_cached_data("key", "value", ttl=1)
        time.sleep(2)
        assert get_cached_data("key") is None

Resources