Cloud Platforms for Data Engineering
Production-grade cloud infrastructure for data pipelines, storage, and analytics on AWS, GCP, and Azure.
Quick Start
# AWS S3 + Lambda Data Pipeline
import boto3
import json
s3_client = boto3.client('s3')
glue_client = boto3.client('glue')
def lambda_handler(event, context):
"""Process S3 event and trigger Glue job."""
bucket = event['Records'][0]['s3']['bucket']['name']
key = event['Records'][0]['s3']['object']['key']
# Trigger Glue ETL job
response = glue_client.start_job_run(
JobName='etl-process-raw-data',
Arguments={
'--source_path': f's3://{bucket}/{key}',
'--output_path': 's3://processed-bucket/output/'
}
)
return {'statusCode': 200, 'jobRunId': response['JobRunId']}
Core Concepts
1. AWS Data Stack
# AWS Glue ETL Job (PySpark)
import sys
from awsglue.transforms import *
from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job
args = getResolvedOptions(sys.argv, ['JOB_NAME', 'source_path', 'output_path'])
sc = SparkContext()
glueContext = GlueContext(sc)
spark = glueContext.spark_session
job = Job(glueContext)
job.init(args['JOB_NAME'], args)
# Read from S3
df = glueContext.create_dynamic_frame.from_options(
connection_type="s3",
connection_options={"paths": [args['source_path']]},
format="parquet"
)
# Transform
df_transformed = ApplyMapping.apply(
frame=df,
mappings=[
("id", "long", "id", "long"),
("name", "string", "customer_name", "string"),
("created_at", "string", "created_at", "timestamp")
]
)
# Write to S3 with partitioning
glueContext.write_dynamic_frame.from_options(
frame=df_transformed,
connection_type="s3",
connection_options={
"path": args['output_path'],
"partitionKeys": ["year", "month"]
},
format="parquet"
)
job.commit()
2. GCP Data Stack
# BigQuery + Cloud Functions
from google.cloud import bigquery
from google.cloud import storage
def process_gcs_file(event, context):
"""Cloud Function triggered by GCS upload."""
bucket = event['bucket']
name = event['name']
client = bigquery.Client()
# Load data from GCS to BigQuery
job_config = bigquery.LoadJobConfig(
source_format=bigquery.SourceFormat.PARQUET,
write_disposition=bigquery.WriteDisposition.WRITE_APPEND,
)
uri = f"gs://{bucket}/{name}"
table_id = "project.dataset.events"
load_job = client.load_table_from_uri(uri, table_id, job_config=job_config)
load_job.result() # Wait for completion
return f"Loaded {load_job.output_rows} rows"
3. Terraform Infrastructure
# AWS Data Lake Infrastructure
resource "aws_s3_bucket" "data_lake" {
bucket = "company-data-lake-${var.environment}"
tags = {
Environment = var.environment
Purpose = "data-lake"
}
}
resource "aws_s3_bucket_lifecycle_configuration" "data_lake_lifecycle" {
bucket = aws_s3_bucket.data_lake.id
rule {
id = "archive-old-data"
status = "Enabled"
transition {
days = 90
storage_class = "GLACIER"
}
expiration {
days = 365
}
}
}
resource "aws_glue_catalog_database" "analytics" {
name = "analytics_${var.environment}"
}
resource "aws_glue_crawler" "data_crawler" {
database_name = aws_glue_catalog_database.analytics.name
name = "data-crawler"
role = aws_iam_role.glue_role.arn
s3_target {
path = "s3://${aws_s3_bucket.data_lake.bucket}/raw/"
}
schedule = "cron(0 6 * * ? *)"
}
4. Cost Optimization
# AWS Cost monitoring
import boto3
from datetime import datetime, timedelta
def get_service_costs(days=30):
"""Get cost breakdown by service."""
ce = boto3.client('ce')
end = datetime.now().strftime('%Y-%m-%d')
start = (datetime.now() - timedelta(days=days)).strftime('%Y-%m-%d')
response = ce.get_cost_and_usage(
TimePeriod={'Start': start, 'End': end},
Granularity='MONTHLY',
Metrics=['UnblendedCost'],
GroupBy=[{'Type': 'DIMENSION', 'Key': 'SERVICE'}]
)
for result in response['ResultsByTime']:
for group in result['Groups']:
service = group['Keys'][0]
cost = float(group['Metrics']['UnblendedCost']['Amount'])
print(f"{service}: ${cost:.2f}")
# S3 Intelligent Tiering
s3 = boto3.client('s3')
s3.put_bucket_intelligent_tiering_configuration(
Bucket='data-lake',
Id='AutoTiering',
IntelligentTieringConfiguration={
'Id': 'AutoTiering',
'Status': 'Enabled',
'Tierings': [
{'Days': 90, 'AccessTier': 'ARCHIVE_ACCESS'},
{'Days': 180, 'AccessTier': 'DEEP_ARCHIVE_ACCESS'}
]
}
)
Tools & Technologies
| Tool |
Purpose |
Version (2025) |
| AWS S3 |
Object storage |
Latest |
| AWS Glue |
ETL service |
4.0 |
| AWS EMR |
Managed Spark |
7.0+ |
| BigQuery |
Analytics DW |
Latest |
| Cloud Dataflow |
Stream/batch |
Latest |
| Azure Data Factory |
ETL/ELT |
Latest |
| Terraform |
IaC |
1.6+ |
| Pulumi |
IaC (Python) |
3.0+ |
Troubleshooting Guide
| Issue |
Symptoms |
Root Cause |
Fix |
| Permission Denied |
AccessDenied error |
IAM policy missing |
Check IAM roles |
| Timeout |
Lambda/Function timeout |
Long-running process |
Increase timeout, use Step Functions |
| Cost Spike |
Unexpected charges |
Unoptimized queries/storage |
Enable cost alerts, lifecycle policies |
| Cold Start |
Slow first invocation |
Lambda cold start |
Provisioned concurrency |
Best Practices
# ✅ DO: Use IAM roles, not access keys
session = boto3.Session() # Uses instance role
# ✅ DO: Enable encryption at rest
s3.put_bucket_encryption(
Bucket='my-bucket',
ServerSideEncryptionConfiguration={...}
)
# ✅ DO: Use VPC endpoints for private access
# ✅ DO: Enable CloudWatch alarms for monitoring
# ✅ DO: Use tags for cost allocation
# ❌ DON'T: Hard-code credentials
# ❌ DON'T: Use root account for operations
# ❌ DON'T: Leave buckets public
Resources
Skill Certification Checklist: