Claude Code Plugins

Community-maintained marketplace

Feedback

Prometheus, Grafana, data quality monitoring, alerting, logging

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name monitoring-observability
description Prometheus, Grafana, logging, alerting, and data pipeline observability
sasmp_version 1.3.0
bonded_agent 03-devops-engineer
bond_type PRIMARY_BOND
skill_version 2.0.0
last_updated 2025-01
complexity intermediate
estimated_mastery_hours 100
prerequisites python-programming, containerization
unlocks mlops, cloud-platforms

Monitoring & Observability

Production monitoring with Prometheus, Grafana, structured logging, and data quality observability.

Quick Start

from prometheus_client import Counter, Histogram, Gauge, start_http_server
import structlog
import time

# Configure structured logging
structlog.configure(
    processors=[
        structlog.processors.TimeStamper(fmt="iso"),
        structlog.processors.JSONRenderer()
    ]
)
logger = structlog.get_logger()

# Prometheus metrics
RECORDS_PROCESSED = Counter('records_processed_total', 'Total records processed', ['pipeline', 'status'])
PROCESSING_TIME = Histogram('processing_duration_seconds', 'Processing duration', ['pipeline'])
QUEUE_SIZE = Gauge('queue_size', 'Current queue size', ['queue_name'])

def process_batch(batch: list, pipeline_name: str):
    start_time = time.time()

    try:
        for record in batch:
            # Process record...
            RECORDS_PROCESSED.labels(pipeline=pipeline_name, status='success').inc()

        duration = time.time() - start_time
        PROCESSING_TIME.labels(pipeline=pipeline_name).observe(duration)

        logger.info("batch_processed",
            pipeline=pipeline_name,
            count=len(batch),
            duration_seconds=duration
        )

    except Exception as e:
        RECORDS_PROCESSED.labels(pipeline=pipeline_name, status='error').inc()
        logger.error("batch_failed", pipeline=pipeline_name, error=str(e))
        raise

# Start metrics server
start_http_server(8000)

Core Concepts

1. Prometheus Metrics

from prometheus_client import Counter, Histogram, Gauge, Summary

# Counter: monotonically increasing value
http_requests = Counter(
    'http_requests_total',
    'Total HTTP requests',
    ['method', 'endpoint', 'status']
)
http_requests.labels(method='GET', endpoint='/api/data', status='200').inc()

# Histogram: distribution of values (latency, sizes)
request_latency = Histogram(
    'request_latency_seconds',
    'Request latency in seconds',
    ['endpoint'],
    buckets=[0.1, 0.25, 0.5, 1.0, 2.5, 5.0, 10.0]
)

with request_latency.labels(endpoint='/api/data').time():
    # Process request
    pass

# Gauge: value that can go up and down
active_connections = Gauge('active_connections', 'Active connections')
active_connections.inc()  # Connection opened
active_connections.dec()  # Connection closed

# Summary: similar to histogram with percentiles
response_size = Summary('response_size_bytes', 'Response size', ['endpoint'])
response_size.labels(endpoint='/api/data').observe(1024)

2. Grafana Dashboard (JSON)

{
  "title": "Data Pipeline Dashboard",
  "panels": [
    {
      "title": "Records Processed",
      "type": "stat",
      "targets": [{
        "expr": "sum(rate(records_processed_total[5m]))",
        "legendFormat": "Records/sec"
      }]
    },
    {
      "title": "Processing Latency P95",
      "type": "graph",
      "targets": [{
        "expr": "histogram_quantile(0.95, rate(processing_duration_seconds_bucket[5m]))",
        "legendFormat": "P95 Latency"
      }]
    },
    {
      "title": "Error Rate",
      "type": "gauge",
      "targets": [{
        "expr": "sum(rate(records_processed_total{status='error'}[5m])) / sum(rate(records_processed_total[5m])) * 100",
        "legendFormat": "Error %"
      }]
    }
  ]
}

3. Structured Logging

import structlog
from datetime import datetime

# Configure structlog
structlog.configure(
    processors=[
        structlog.stdlib.add_log_level,
        structlog.processors.TimeStamper(fmt="iso"),
        structlog.processors.StackInfoRenderer(),
        structlog.processors.format_exc_info,
        structlog.processors.JSONRenderer()
    ],
    context_class=dict,
    logger_factory=structlog.PrintLoggerFactory(),
)

logger = structlog.get_logger()

# Usage with context
log = logger.bind(service="etl-pipeline", environment="production")

def process_order(order_id: str, user_id: str):
    order_log = log.bind(order_id=order_id, user_id=user_id)

    order_log.info("processing_started")

    try:
        # Process...
        order_log.info("processing_completed", duration_ms=150)
    except Exception as e:
        order_log.error("processing_failed", error=str(e), exc_info=True)
        raise

4. Alerting Rules (Prometheus)

# alerting_rules.yml
groups:
  - name: data-pipeline-alerts
    rules:
      - alert: HighErrorRate
        expr: |
          sum(rate(records_processed_total{status="error"}[5m]))
          / sum(rate(records_processed_total[5m])) > 0.05
        for: 5m
        labels:
          severity: critical
        annotations:
          summary: "High error rate in data pipeline"
          description: "Error rate is {{ $value | humanizePercentage }}"

      - alert: PipelineStalled
        expr: |
          sum(rate(records_processed_total[10m])) == 0
        for: 10m
        labels:
          severity: warning
        annotations:
          summary: "Data pipeline is not processing records"

      - alert: HighLatency
        expr: |
          histogram_quantile(0.95, rate(processing_duration_seconds_bucket[5m])) > 5
        for: 5m
        labels:
          severity: warning
        annotations:
          summary: "High processing latency detected"

Tools & Technologies

Tool Purpose Version (2025)
Prometheus Metrics collection 2.50+
Grafana Visualization 10.3+
Loki Log aggregation 2.9+
Alertmanager Alert routing 0.27+
OpenTelemetry Tracing standard 1.24+
Datadog Full observability Latest
Monte Carlo Data observability Latest

Troubleshooting Guide

Issue Symptoms Root Cause Fix
Missing Metrics Gaps in graphs Scrape failure Check targets, network
High Cardinality Prometheus OOM Too many labels Reduce label values
Alert Fatigue Too many alerts Sensitive thresholds Tune thresholds, add for duration
Log Volume High storage cost Verbose logging Adjust log levels

Best Practices

# ✅ DO: Use appropriate metric types
# Counter for totals, Histogram for latency

# ✅ DO: Add meaningful labels (but limit cardinality)
REQUESTS.labels(method='GET', status='200', endpoint='/api').inc()

# ✅ DO: Include correlation IDs in logs
logger.info("request_completed", request_id=request_id)

# ✅ DO: Set up dashboards for key metrics

# ❌ DON'T: High cardinality labels (user_id, request_id as labels)
# ❌ DON'T: Log sensitive data
# ❌ DON'T: Alert on every error

Resources


Skill Certification Checklist:

  • Can instrument applications with Prometheus metrics
  • Can create Grafana dashboards
  • Can implement structured logging
  • Can set up alerting rules
  • Can troubleshoot observability issues