Tree Traversal Skill
Atomic Responsibility: Execute tree traversal algorithms with correct order and optimal space.
Tree Node Definition
from typing import Optional, List
from collections import deque
class TreeNode:
"""Standard binary tree node."""
def __init__(self, val: int = 0, left: 'TreeNode' = None, right: 'TreeNode' = None):
self.val = val
self.left = left
self.right = right
DFS - Inorder (Left, Root, Right)
def inorder_recursive(root: Optional[TreeNode]) -> List[int]:
"""
Inorder traversal - gives sorted order for BST.
Time: O(n), Space: O(h) where h = height
Args:
root: Root of binary tree
Returns:
List of values in inorder sequence
"""
result = []
def dfs(node: Optional[TreeNode]) -> None:
if not node:
return
dfs(node.left)
result.append(node.val)
dfs(node.right)
dfs(root)
return result
def inorder_iterative(root: Optional[TreeNode]) -> List[int]:
"""
Iterative inorder using explicit stack.
Time: O(n), Space: O(h)
Use when: Recursion depth might exceed limit.
"""
result = []
stack = []
current = root
while current or stack:
# Go left as far as possible
while current:
stack.append(current)
current = current.left
# Process current node
current = stack.pop()
result.append(current.val)
# Move to right subtree
current = current.right
return result
DFS - Preorder (Root, Left, Right)
def preorder_recursive(root: Optional[TreeNode]) -> List[int]:
"""
Preorder traversal - useful for tree serialization.
Time: O(n), Space: O(h)
"""
if not root:
return []
return ([root.val] +
preorder_recursive(root.left) +
preorder_recursive(root.right))
def preorder_iterative(root: Optional[TreeNode]) -> List[int]:
"""
Iterative preorder using stack.
Note: Push right first, then left (LIFO).
"""
if not root:
return []
result = []
stack = [root]
while stack:
node = stack.pop()
result.append(node.val)
# Right first (so left is processed first)
if node.right:
stack.append(node.right)
if node.left:
stack.append(node.left)
return result
DFS - Postorder (Left, Right, Root)
def postorder_recursive(root: Optional[TreeNode]) -> List[int]:
"""
Postorder traversal - useful for deletion, expression evaluation.
Time: O(n), Space: O(h)
"""
if not root:
return []
return (postorder_recursive(root.left) +
postorder_recursive(root.right) +
[root.val])
def postorder_iterative(root: Optional[TreeNode]) -> List[int]:
"""
Iterative postorder using two stacks or modified preorder.
Trick: Modified preorder (root, right, left) then reverse.
"""
if not root:
return []
result = []
stack = [root]
while stack:
node = stack.pop()
result.append(node.val)
# Left first (so right is processed first after reverse)
if node.left:
stack.append(node.left)
if node.right:
stack.append(node.right)
return result[::-1] # Reverse to get postorder
BFS - Level Order Traversal
def level_order(root: Optional[TreeNode]) -> List[List[int]]:
"""
Level-by-level traversal using queue.
Time: O(n), Space: O(w) where w = max width
Returns:
List of levels, each level is a list of values
"""
if not root:
return []
result = []
queue = deque([root])
while queue:
level_size = len(queue)
level = []
for _ in range(level_size):
node = queue.popleft()
level.append(node.val)
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
result.append(level)
return result
def zigzag_level_order(root: Optional[TreeNode]) -> List[List[int]]:
"""
Level order with alternating direction.
Time: O(n), Space: O(w)
"""
if not root:
return []
result = []
queue = deque([root])
left_to_right = True
while queue:
level_size = len(queue)
level = deque()
for _ in range(level_size):
node = queue.popleft()
if left_to_right:
level.append(node.val)
else:
level.appendleft(node.val)
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
result.append(list(level))
left_to_right = not left_to_right
return result
BST Validation
def is_valid_bst(root: Optional[TreeNode]) -> bool:
"""
Validate if tree is a valid Binary Search Tree.
Time: O(n), Space: O(h)
Property: All left descendants < node < all right descendants
"""
def validate(node: Optional[TreeNode],
min_val: float,
max_val: float) -> bool:
if not node:
return True
if not (min_val < node.val < max_val):
return False
return (validate(node.left, min_val, node.val) and
validate(node.right, node.val, max_val))
return validate(root, float('-inf'), float('inf'))
Unit Test Template
import pytest
class TestTreeTraversal:
"""Unit tests for tree traversal implementations."""
@pytest.fixture
def sample_tree(self):
"""Create sample tree: 1 -> (2, 3) -> ((4, 5), None)"""
root = TreeNode(1)
root.left = TreeNode(2)
root.right = TreeNode(3)
root.left.left = TreeNode(4)
root.left.right = TreeNode(5)
return root
def test_inorder(self, sample_tree):
assert inorder_recursive(sample_tree) == [4, 2, 5, 1, 3]
assert inorder_iterative(sample_tree) == [4, 2, 5, 1, 3]
def test_preorder(self, sample_tree):
assert preorder_recursive(sample_tree) == [1, 2, 4, 5, 3]
def test_postorder(self, sample_tree):
assert postorder_recursive(sample_tree) == [4, 5, 2, 3, 1]
def test_level_order(self, sample_tree):
assert level_order(sample_tree) == [[1], [2, 3], [4, 5]]
def test_empty_tree(self):
assert inorder_recursive(None) == []
assert level_order(None) == []
def test_single_node(self):
root = TreeNode(1)
assert inorder_recursive(root) == [1]
Troubleshooting
Common Issues
| Issue |
Cause |
Solution |
| RecursionError |
Deep tree |
Use iterative version |
| Wrong order |
Processing order incorrect |
Verify left/right/root sequence |
| Missing nodes |
Not checking None |
Add if not node: return |
| Stack overflow |
Very unbalanced tree |
Convert to iterative |
Debug Checklist
□ Null root handled?
□ Base case returns correct value?
□ Both children processed?
□ Return value accumulated correctly?
□ Stack/queue order correct?
□ Tested with single node and empty tree?