Claude Code Plugins

Community-maintained marketplace

Feedback

AI/LLM skill - Prompt engineering, RAG, fine-tuning, LangChain

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name ai
description AI/LLM skill - Prompt engineering, RAG, fine-tuning, LangChain
version 1.0.0
sasmp_version 1.3.0
input_schema [object Object]
output_schema [object Object]
retry_config [object Object]
timeout_ms 60000

AI/LLM Skill

PURPOSE

LLM applications, prompt engineering, and AI system design.

CORE COMPETENCIES

Prompt Engineering:
├── Zero-shot, few-shot
├── Chain-of-thought
├── System prompts
└── Output formatting

RAG (Retrieval-Augmented Generation):
├── Document chunking
├── Embedding models
├── Vector databases
├── Retrieval strategies
└── Context window management

LLM Frameworks:
├── LangChain
├── LlamaIndex
├── Anthropic SDK
└── OpenAI API

CODE PATTERNS

RAG Pipeline

from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Pinecone
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI

# Initialize
embeddings = OpenAIEmbeddings()
vectorstore = Pinecone.from_existing_index("docs", embeddings)
llm = ChatOpenAI(model="gpt-4", temperature=0)

# RAG chain
qa_chain = RetrievalQA.from_chain_type(
    llm=llm,
    retriever=vectorstore.as_retriever(
        search_kwargs={"k": 5}
    ),
    return_source_documents=True
)

result = qa_chain({"query": "How does X work?"})

Retry with Backoff

from tenacity import retry, stop_after_attempt, wait_exponential

@retry(
    stop=stop_after_attempt(3),
    wait=wait_exponential(multiplier=1, min=1, max=10)
)
def call_llm(prompt: str) -> str:
    return client.chat.completions.create(
        model="gpt-4",
        messages=[{"role": "user", "content": prompt}]
    ).choices[0].message.content

TROUBLESHOOTING

Issue Cause Solution
Hallucinations No grounding Use RAG, add sources
Rate limited Too many requests Implement backoff
Context overflow Too long Chunking, summarization
Poor retrieval Bad embeddings Tune chunk size, model

BEST PRACTICES

1. Use structured outputs (JSON mode)
2. Implement proper error handling
3. Add observability (LangSmith, Arize)
4. Cache responses when possible
5. Use streaming for long responses
6. Evaluate with diverse test sets