| name | mongodb-find-queries |
| version | 2.1.0 |
| description | Master MongoDB find queries with filters, projections, sorting, and pagination. Learn query operators, comparison, logical operators, and real-world query patterns. Use when retrieving data from MongoDB collections. |
| sasmp_version | 1.3.0 |
| bonded_agent | 02-mongodb-queries-aggregation |
| bond_type | PRIMARY_BOND |
| capabilities | query-construction, filter-operators, projection-design, sorting-pagination, text-search |
| input_validation | [object Object] |
| output_format | [object Object] |
| error_handling | [object Object] |
| prerequisites | [object Object] |
| testing | [object Object] |
MongoDB Find Queries
Master the find() method for powerful data retrieval.
Quick Start
Basic Query
// Find one document
const user = await collection.findOne({ email: 'user@example.com' })
// Find multiple documents
const users = await collection.find({ status: 'active' }).toArray()
// Find with multiple conditions
const products = await collection.find({
price: { $gt: 100 },
category: 'electronics'
}).toArray()
Query Operators Reference
Comparison Operators:
{ field: { $eq: value } } // Equal
{ field: { $ne: value } } // Not equal
{ field: { $gt: value } } // Greater than
{ field: { $gte: value } } // Greater or equal
{ field: { $lt: value } } // Less than
{ field: { $lte: value } } // Less or equal
{ field: { $in: [val1, val2] } } // In array
{ field: { $nin: [val1, val2] } } // Not in array
Logical Operators:
{ $and: [{field1: val1}, {field2: val2}] } // AND
{ $or: [{field1: val1}, {field2: val2}] } // OR
{ $not: {field: {$gt: 5}} } // NOT
{ $nor: [{field1: val1}, {field2: val2}] } // NOR
Array Operators:
{ field: { $all: [val1, val2] } } // All values in array
{ field: { $elemMatch: {...} } } // Match array elements
{ field: { $size: 5 } } // Array size exactly 5
Projection (Select Fields)
// Include fields
db.users.findOne({...}, { projection: { name: 1, email: 1 } })
// Returns: { _id, name, email }
// Exclude fields
db.users.findOne({...}, { projection: { password: 0 } })
// Returns: all fields except password
// Hide _id
db.users.findOne({...}, { projection: { _id: 0, name: 1 } })
// Computed fields
db.users.findOne({...}, {
projection: {
firstName: 1,
lastName: 1,
fullName: { $concat: ['$firstName', ' ', '$lastName'] }
}
})
Sorting
// Sort ascending (1) or descending (-1)
db.products.find({}).sort({ price: 1 }).toArray() // Price ascending
db.products.find({}).sort({ createdAt: -1 }).toArray() // Newest first
// Multi-field sort
db.orders.find({}).sort({
status: 1, // Active first
createdAt: -1 // Then newest
}).toArray()
// Case-insensitive sort
db.users.find({}).collation({ locale: 'en', strength: 2 }).sort({ name: 1 })
Pagination
// Method 1: Skip and Limit
const pageSize = 10
const pageNumber = 2
const skip = (pageNumber - 1) * pageSize
const results = await collection
.find({})
.skip(skip)
.limit(pageSize)
.toArray()
// Method 2: Cursor-based (better for large datasets)
const lastId = objectIdOfLastDocument
const results = await collection
.find({ _id: { $gt: lastId } })
.limit(pageSize)
.toArray()
Text Search
// Create text index first
db.articles.createIndex({ title: 'text', content: 'text' })
// Search
db.articles.find(
{ $text: { $search: 'mongodb database' } },
{ score: { $meta: 'textScore' } }
).sort({ score: { $meta: 'textScore' } }).toArray()
// Phrase search
db.articles.find({ $text: { $search: '"mongodb database"' } })
// Exclude terms
db.articles.find({ $text: { $search: 'mongodb -relational' } })
Regex Queries
// Case-sensitive regex
db.users.find({ email: { $regex: /^admin/, $options: '' } })
// Case-insensitive
db.users.find({ email: { $regex: /gmail/, $options: 'i' } })
// Multiline
db.posts.find({ content: { $regex: /^mongodb/m } })
// String pattern
db.users.find({ email: { $regex: '^[a-z]+@gmail', $options: 'i' } })
Advanced Query Patterns
Nested Document Queries
// Query nested field
db.users.find({ 'address.city': 'New York' })
// Match entire nested document
db.users.find({ address: { street: '123 Main', city: 'NY' } })
// Nested array
db.orders.find({ 'items.productId': ObjectId(...) })
Date Queries
// Date range
db.orders.find({
createdAt: {
$gte: new Date('2024-01-01'),
$lt: new Date('2024-12-31')
}
})
// This week
const now = new Date()
const weekAgo = new Date(now.getTime() - 7 * 24 * 60 * 60 * 1000)
db.posts.find({ publishedAt: { $gte: weekAgo } })
Null Handling
// Find null values
db.users.find({ phone: null })
// Find missing field
db.users.find({ phone: { $exists: false } })
// Find non-null
db.users.find({ phone: { $ne: null } })
// Not missing
db.users.find({ phone: { $exists: true } })
Performance Tips
✅ Query Optimization:
- Use indexes on frequently filtered fields
- Filter early - $match before other stages
- Project fields - Don't fetch unnecessary data
- Limit results - Use pagination
- Use explain() - Analyze every query
✅ Common Mistakes:
- ❌
find({})without limit - Returns all documents - ❌ No index on filtered fields - Full collection scans
- ❌ Fetching fields you don't need - Wastes bandwidth
- ❌ Sorting without index - Memory-intensive
- ❌ Complex regex patterns - Slow performance
Real-World Examples
User Search with Pagination
async function searchUsers(searchTerm, page = 1) {
const pageSize = 20
const skip = (page - 1) * pageSize
const users = await db.users
.find({
$or: [
{ name: { $regex: searchTerm, $options: 'i' } },
{ email: { $regex: searchTerm, $options: 'i' } }
]
})
.project({ password: 0 }) // Don't return passwords
.sort({ name: 1 })
.skip(skip)
.limit(pageSize)
.toArray()
const total = await db.users.countDocuments({
$or: [
{ name: { $regex: searchTerm, $options: 'i' } },
{ email: { $regex: searchTerm, $options: 'i' } }
]
})
return {
data: users,
total,
pages: Math.ceil(total / pageSize),
currentPage: page
}
}
Advanced Filtering
async function filterProducts(filters) {
const query = {}
if (filters.minPrice) query.price = { $gte: filters.minPrice }
if (filters.maxPrice) query.price = { ...query.price, $lte: filters.maxPrice }
if (filters.category) query.category = filters.category
if (filters.inStock) query.stock = { $gt: 0 }
if (filters.rating) query.rating = { $gte: filters.rating }
return await db.products
.find(query)
.sort({ [filters.sortBy]: filters.sortOrder })
.limit(filters.limit || 50)
.toArray()
}
Next Steps
- Create Sample Queries - Find + filters
- Add Projections - Select needed fields
- Implement Sorting - Order results
- Add Pagination - Handle large datasets
- Monitor Performance - Use explain()
You're now a MongoDB query expert! 🎯