Claude Code Plugins

Community-maintained marketplace

Feedback
0
0

Master MongoDB indexing and query optimization. Learn index types, explain plans, performance tuning, and query analysis. Use when optimizing slow queries, analyzing performance, or designing indexes.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name mongodb-indexing-optimization
version 2.1.0
description Master MongoDB indexing and query optimization. Learn index types, explain plans, performance tuning, and query analysis. Use when optimizing slow queries, analyzing performance, or designing indexes.
sasmp_version 1.3.0
bonded_agent 04-mongodb-performance-indexing
bond_type PRIMARY_BOND
capabilities index-design, explain-analysis, query-optimization, performance-profiling, esr-rule-application
input_validation [object Object]
output_format [object Object]
error_handling [object Object]
prerequisites [object Object]
testing [object Object]

MongoDB Indexing & Optimization

Master performance optimization through proper indexing.

Quick Start

Create Indexes

// Single field index
await collection.createIndex({ email: 1 });

// Compound index
await collection.createIndex({ status: 1, createdAt: -1 });

// Unique index
await collection.createIndex({ email: 1 }, { unique: true });

// Sparse index (skip null values)
await collection.createIndex({ phone: 1 }, { sparse: true });

// Text index (full-text search)
await collection.createIndex({ title: 'text', description: 'text' });

// TTL index (auto-delete documents)
await collection.createIndex({ createdAt: 1 }, { expireAfterSeconds: 3600 });

List and Analyze Indexes

// List all indexes
const indexes = await collection.indexes();
console.log(indexes);

// Drop an index
await collection.dropIndex('email_1');

// Drop all non-_id indexes
await collection.dropIndexes();

Explain Query Plan

// Analyze query execution
const explain = await collection.find({ email: 'test@example.com' }).explain('executionStats');

console.log(explain.executionStats);
// Shows: executionStages, nReturned, totalDocsExamined, executionTimeMillis

Index Types

Single Field Index

// Index on one field
db.collection.createIndex({ age: 1 })

// Query uses index if searching on age
db.collection.find({ age: { $gte: 18 } })

Compound Index

// Index on multiple fields - order matters!
db.collection.createIndex({ status: 1, createdAt: -1 })

// Queries that benefit:
// 1. { status: 'active', createdAt: { $gt: date } }
// 2. { status: 'active' }
// But NOT: { createdAt: { $gt: date } } alone

Array Index (Multikey)

// Automatically created for arrays
db.collection.createIndex({ tags: 1 })

// Matches documents where tags contains value
db.collection.find({ tags: 'mongodb' })

Text Index

// Full-text search
db.collection.createIndex({ title: 'text', body: 'text' })

// Query
db.collection.find({ $text: { $search: 'mongodb database' } })

Geospatial Index

// 2D spherical for lat/long
db.collection.createIndex({ location: '2dsphere' })

// Find nearby
db.collection.find({
  location: {
    $near: { type: 'Point', coordinates: [-73.97, 40.77] },
    $maxDistance: 5000
  }
})

Index Design: ESR Rule

Equality, Sort, Range

// Query: find active users, sort by created date, limit age
db.users.find({
  status: 'active',
  age: { $gte: 18 }
}).sort({ createdAt: -1 })

// Optimal index:
db.users.createIndex({
  status: 1,      // Equality
  createdAt: -1,  // Sort
  age: 1          // Range
})

Performance Analysis

Check if Query Uses Index

const explain = await collection.find({ email: 'test@example.com' }).explain('executionStats');

// IXSCAN = Good (index scan)
// COLLSCAN = Bad (collection scan)
console.log(explain.executionStats.executionStages.stage);

Covering Query

// Query results entirely from index
db.users.createIndex({ email: 1, name: 1, _id: 1 })

// This query is "covered" - no need to fetch documents
db.users.find({ email: 'test@example.com' }, { email: 1, name: 1, _id: 0 })

Python Examples

from pymongo import ASCENDING, DESCENDING

# Create index
collection.create_index([('email', ASCENDING)], unique=True)

# Compound index
collection.create_index([('status', ASCENDING), ('createdAt', DESCENDING)])

# Explain plan
explain = collection.find({'email': 'test@example.com'}).explain()
print(explain['executionStats'])

# Drop index
collection.drop_index('email_1')

Best Practices

✅ Index fields used in $match (early in pipeline) ✅ Use ESR rule for compound indexes ✅ Monitor index size and memory ✅ Remove unused indexes ✅ Use explain() to verify index usage ✅ Index strings with high cardinality ✅ Avoid indexing fields with many nulls ✅ Consider index intersection ✅ Regular index maintenance ✅ Monitor query performance