Claude Code Plugins

Community-maintained marketplace

Feedback

Master MongoDB schema design and data modeling patterns. Learn embedding vs referencing, relationships, normalization, and schema evolution. Use when designing databases, normalizing data, or optimizing queries.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name mongodb-schema-design
version 2.1.0
description Master MongoDB schema design and data modeling patterns. Learn embedding vs referencing, relationships, normalization, and schema evolution. Use when designing databases, normalizing data, or optimizing queries.
sasmp_version 1.3.0
bonded_agent 03-mongodb-data-modeling
bond_type PRIMARY_BOND
capabilities embedding-strategy, referencing-strategy, relationship-modeling, schema-patterns, evolution-planning
input_validation [object Object]
output_format [object Object]
error_handling [object Object]
prerequisites [object Object]
testing [object Object]

MongoDB Schema Design

Master data modeling and schema patterns.

Quick Start

One-to-One: Embedded

// User with single address - embed if always accessed together
{
  _id: ObjectId('...'),
  name: 'John',
  email: 'john@example.com',
  address: {
    street: '123 Main St',
    city: 'New York',
    zip: '10001'
  }
}

One-to-Many: Embed Array

// User with multiple tags - embed if limited size
{
  _id: ObjectId('...'),
  name: 'John',
  tags: ['mongodb', 'database', 'nosql'],
  posts: [
    { _id: 1, title: 'Post 1', content: '...' },
    { _id: 2, title: 'Post 2', content: '...' }
  ]
}

One-to-Many: Reference

// User with many orders - reference if potentially large
{
  _id: ObjectId('user1'),
  name: 'John',
  email: 'john@example.com'
}

// Orders collection
{
  _id: ObjectId('order1'),
  customerId: ObjectId('user1'),
  total: 99.99
}

Many-to-Many: Array of References

// Products with categories
{
  _id: ObjectId('product1'),
  name: 'Laptop',
  categoryIds: [
    ObjectId('electronics'),
    ObjectId('computers')
  ]
}

// Categories collection
{
  _id: ObjectId('electronics'),
  name: 'Electronics'
}

Schema Patterns

Attribute Pattern

// Store variant attributes flexibly
{
  _id: ObjectId('...'),
  productName: 'T-Shirt',
  attributes: [
    { key: 'color', value: 'blue' },
    { key: 'size', value: 'L' },
    { key: 'material', value: 'cotton' }
  ]
}

Polymorphic Pattern

// Different document types in same collection
{
  _id: ObjectId('...'),
  type: 'email',
  to: 'user@example.com',
  subject: 'Hello'
}

{
  _id: ObjectId('...'),
  type: 'sms',
  phoneNumber: '+1234567890',
  message: 'Hi there'
}

Tree Structures: Adjacency List

// Parent-child relationships
{
  _id: ObjectId('...'),
  name: 'Electronics',
  parent: null
}

{
  _id: ObjectId('...'),
  name: 'Computers',
  parent: ObjectId('electronics')
}

Versioned Pattern

// Track document history
{
  _id: ObjectId('...'),
  name: 'Product',
  description: 'Latest description',
  versions: [
    { v: 1, name: 'Product', description: 'Original', date: ISODate(...) },
    { v: 2, name: 'Product', description: 'Updated', date: ISODate(...) }
  ]
}

Design Principles

Embedding Advantages

  • Single query to fetch related data
  • Atomic updates for related documents
  • No joins needed

Referencing Advantages

  • Avoid data duplication
  • Smaller documents
  • Flexible relationships
  • Can grow independently

Decision Tree

Does the related data grow unbounded?
  YES → Use referencing
  NO → Consider embedding

Is the related data frequently accessed separately?
  YES → Use referencing
  NO → Consider embedding

Do updates need to be atomic across documents?
  YES → Use embedding
  NO → Use referencing

Python Design Example

# User with embedded address
users.insert_one({
    'name': 'John',
    'email': 'john@example.com',
    'address': {
        'street': '123 Main St',
        'city': 'New York'
    }
})

# User with references to orders
users.insert_one({
    '_id': ObjectId('...'),
    'name': 'John'
})

orders.insert_one({
    'userId': ObjectId('...'),
    'total': 99.99
})

# Query with $lookup
users.aggregate([
    { '$lookup': {
        'from': 'orders',
        'localField': '_id',
        'foreignField': 'userId',
        'as': 'orders'
    }}
])

Best Practices

✅ Embed when data is always accessed together ✅ Reference for unbounded arrays ✅ Keep document size under 16MB ✅ Consider query patterns when designing ✅ Denormalize carefully for performance ✅ Plan for schema evolution ✅ Use validation schemas ✅ Document your design decisions