Claude Code Plugins

Community-maintained marketplace

Feedback
1
0

Master database design (SQL, NoSQL), system architecture, API design (REST, GraphQL), and building scalable systems. Learn PostgreSQL, MongoDB, system design patterns, and enterprise architectures.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name databases-architecture-skill
description Master database design (SQL, NoSQL), system architecture, API design (REST, GraphQL), and building scalable systems. Learn PostgreSQL, MongoDB, system design patterns, and enterprise architectures.

Databases & Architecture Skill

Complete guide to designing databases, systems, and APIs that scale.

Quick Start

Learning Path

Data → Schema → APIs → Architecture
  ↓        ↓        ↓        ↓
SQL     Normalize REST   Microservices
NoSQL  Indexes    GraphQL Patterns

Get Started in 5 Steps

  1. SQL Fundamentals (2-3 weeks)

    • SELECT, INSERT, UPDATE, DELETE
    • Joins and aggregations
  2. Database Design (3-4 weeks)

    • Normalization
    • Entity-relationship modeling
    • Indexing
  3. NoSQL Databases (2-3 weeks)

    • Document stores (MongoDB)
    • Key-value (Redis)
    • When to use each
  4. API Design (3-4 weeks)

    • REST principles
    • GraphQL basics
    • Error handling
  5. System Architecture (ongoing)

    • Scalability patterns
    • Caching strategies
    • Distributed systems

SQL Databases

SQL Fundamentals

-- CREATE TABLE
CREATE TABLE users (
  id SERIAL PRIMARY KEY,
  name VARCHAR(255) NOT NULL,
  email VARCHAR(255) UNIQUE,
  age INT,
  created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

-- INSERT
INSERT INTO users (name, email, age)
VALUES ('Alice', 'alice@example.com', 25);

-- SELECT (basic)
SELECT * FROM users;
SELECT name, email FROM users;

-- WHERE (filtering)
SELECT * FROM users WHERE age > 25;
SELECT * FROM users WHERE age >= 25 AND age <= 35;

-- LIKE (pattern matching)
SELECT * FROM users WHERE name LIKE 'A%';  -- Starts with A

-- ORDER BY (sorting)
SELECT * FROM users ORDER BY age DESC;  -- Highest first

-- LIMIT (pagination)
SELECT * FROM users LIMIT 10 OFFSET 20;  -- Skip 20, show 10

Advanced SQL

-- JOINS
SELECT users.name, orders.amount
FROM users
INNER JOIN orders ON users.id = orders.user_id;

-- LEFT JOIN (include nulls)
SELECT users.name, COUNT(orders.id) as order_count
FROM users
LEFT JOIN orders ON users.id = orders.user_id
GROUP BY users.id, users.name;

-- GROUP BY & AGGREGATION
SELECT age, COUNT(*) as count, AVG(salary) as avg_salary
FROM users
GROUP BY age
HAVING COUNT(*) > 5;  -- Filter groups

-- Window functions
SELECT name, salary,
  AVG(salary) OVER (PARTITION BY department) as dept_avg,
  RANK() OVER (ORDER BY salary DESC) as salary_rank
FROM employees;

-- CTEs (Common Table Expressions)
WITH high_earners AS (
  SELECT * FROM employees WHERE salary > 100000
)
SELECT department, COUNT(*) as count
FROM high_earners
GROUP BY department;

-- UPDATE
UPDATE users SET age = 26 WHERE name = 'Alice';

-- DELETE
DELETE FROM users WHERE age < 18;

Database Design

Normalization (Reduce data redundancy):

1NF: Each column has atomic value
2NF: Remove partial dependencies
3NF: Remove transitive dependencies
BCNF: Every determinant is a candidate key

Example - Poor vs Good Design:

-- POOR (denormalized)
CREATE TABLE students (
  id INT PRIMARY KEY,
  name VARCHAR(255),
  course1 VARCHAR(255),
  course2 VARCHAR(255),
  course3 VARCHAR(255),
  teacher1 VARCHAR(255),
  teacher2 VARCHAR(255)
);

-- GOOD (normalized)
CREATE TABLE students (
  id INT PRIMARY KEY,
  name VARCHAR(255)
);

CREATE TABLE courses (
  id INT PRIMARY KEY,
  name VARCHAR(255),
  teacher_id INT FOREIGN KEY
);

CREATE TABLE enrollments (
  student_id INT FOREIGN KEY,
  course_id INT FOREIGN KEY,
  PRIMARY KEY (student_id, course_id)
);

Indexing & Performance

-- Create index
CREATE INDEX idx_email ON users(email);
CREATE INDEX idx_age_salary ON users(age, salary);  -- Composite

-- Analyze query performance
EXPLAIN SELECT * FROM users WHERE email = 'alice@example.com';

-- Index types
-- B-tree: General purpose (default)
-- Hash: Exact matches only
-- GiST: Geospatial, full-text search
-- BRIN: Large datasets, sequential data

-- When to index
-- ✓ Columns in WHERE clause
-- ✓ Columns in JOIN ON clause
-- ✗ Low cardinality (yes/no, status)
-- ✗ Small tables

PostgreSQL Advanced

-- JSONB (JSON with indexing)
CREATE TABLE products (
  id SERIAL PRIMARY KEY,
  name VARCHAR(255),
  metadata JSONB
);

INSERT INTO products VALUES (1, 'Laptop', '{"color": "silver", "specs": {"cpu": "M1"}}');

-- Query JSONB
SELECT * FROM products WHERE metadata->>'color' = 'silver';
SELECT * FROM products WHERE metadata->'specs'->>'cpu' = 'M1';

-- Array columns
CREATE TABLE tags (
  id SERIAL PRIMARY KEY,
  article_id INT,
  tags TEXT[]
);

SELECT * FROM tags WHERE 'database' = ANY(tags);

-- Full-text search
CREATE TABLE articles (
  id SERIAL PRIMARY KEY,
  title VARCHAR(255),
  content TEXT,
  search_vector tsvector
);

UPDATE articles SET search_vector = to_tsvector('english', title || ' ' || content);
SELECT * FROM articles WHERE search_vector @@ to_tsquery('database');

NoSQL Databases

MongoDB Document Storage

// Insert documents
db.users.insertOne({
  _id: ObjectId(),
  name: "Alice",
  email: "alice@example.com",
  age: 25,
  tags: ["developer", "python"],
  address: {
    street: "123 Main St",
    city: "New York",
    zip: "10001"
  }
});

// Query documents
db.users.find({ name: "Alice" });
db.users.find({ age: { $gt: 25 } });  // Greater than
db.users.find({ tags: "python" });  // Array contains

// Update
db.users.updateOne(
  { name: "Alice" },
  { $set: { age: 26 } }
);

db.users.updateOne(
  { _id: ObjectId(...) },
  { $push: { tags: "javascript" } }  // Add to array
);

// Aggregation pipeline
db.users.aggregate([
  { $match: { age: { $gt: 20 } } },
  { $group: { _id: null, avg_age: { $avg: "$age" } } },
  { $sort: { avg_age: -1 } }
]);

// Indexes
db.users.createIndex({ email: 1 });
db.users.createIndex({ name: 1, age: 1 });
db.users.createIndex({ search: "text" });  // Full-text search

Redis Caching

import redis

r = redis.Redis(host='localhost', port=6379)

# Strings
r.set('user:1:name', 'Alice')
r.get('user:1:name')  # b'Alice'
r.incr('page:views')  # Increment counter

# TTL (Time to live)
r.setex('token:xyz', 3600, 'valid')  # Expires in 1 hour

# Lists
r.lpush('queue:jobs', 'job1', 'job2')
r.rpop('queue:jobs')  # Dequeue
r.llen('queue:jobs')  # Length

# Sets
r.sadd('tags:post:1', 'python', 'database', 'backend')
r.smembers('tags:post:1')
r.sismember('tags:post:1', 'python')  # Is member?

# Hashes
r.hset('user:1', mapping={'name': 'Alice', 'email': 'alice@example.com'})
r.hgetall('user:1')

# Pub/Sub
r.publish('channel:notifications', 'New message')

# Transactions
pipe = r.pipeline()
pipe.set('key1', 'value1')
pipe.set('key2', 'value2')
pipe.execute()

API Design

REST API Best Practices

HTTP Methods:
GET    - Retrieve resource (safe, idempotent)
POST   - Create resource
PUT    - Replace entire resource (idempotent)
PATCH  - Partial update
DELETE - Remove resource (idempotent)

Status Codes:
200 OK - Success
201 Created - Resource created
204 No Content - Success, no body
400 Bad Request - Client error
401 Unauthorized - Auth required
403 Forbidden - Not allowed
404 Not Found - Resource missing
500 Internal Server Error

Resource URLs:

GET    /api/users              # List all
GET    /api/users/:id          # Get one
POST   /api/users              # Create
PUT    /api/users/:id          # Update (full)
PATCH  /api/users/:id          # Update (partial)
DELETE /api/users/:id          # Delete

// Nested resources
GET    /api/users/:id/posts    # User's posts
POST   /api/users/:id/posts    # Create post for user

Request/Response Example:

POST /api/users
Content-Type: application/json

{
  "name": "Alice",
  "email": "alice@example.com",
  "age": 25
}

Response (201 Created):
{
  "id": 123,
  "name": "Alice",
  "email": "alice@example.com",
  "age": 25,
  "created_at": "2024-01-15T10:30:00Z"
}

GraphQL

# Schema
type User {
  id: ID!
  name: String!
  email: String!
  posts: [Post!]!
}

type Post {
  id: ID!
  title: String!
  content: String!
  author: User!
}

type Query {
  user(id: ID!): User
  users(limit: Int): [User!]!
  post(id: ID!): Post
}

type Mutation {
  createUser(name: String!, email: String!): User!
  updateUser(id: ID!, name: String): User
  deleteUser(id: ID!): Boolean!
}
# Query
query GetUserWithPosts {
  user(id: "123") {
    name
    email
    posts {
      title
      id
    }
  }
}

# Mutation
mutation CreateUser {
  createUser(name: "Alice", email: "alice@example.com") {
    id
    name
    email
  }
}

GraphQL vs REST:

Aspect REST GraphQL
Over-fetching Common None
Under-fetching Need multiple requests Single query
Caching Easy (HTTP caching) More complex
Learning curve Low High
Use case Simple CRUD Complex, nested data

System Design & Architecture

Scalability Patterns

Vertical Scaling (Scale Up):

  • Add more CPU, RAM, storage
  • Simple but has limits
  • Single point of failure

Horizontal Scaling (Scale Out):

  • Add more servers
  • Load balancing needed
  • Better resilience

Caching Strategy

Cache Levels:
1. Client-side (browser cache)
2. CDN (edge caching)
3. Application cache (Redis, Memcached)
4. Database (query caching)

Cache Invalidation Strategies:

1. TTL (Time to Live) - Automatic expiration
2. Event-based - Invalidate on change
3. Purge - Manual invalidation

Microservices Architecture

Advantages:
✓ Independent scaling
✓ Technology diversity
✓ Faster deployment

Challenges:
✗ Network latency
✗ Distributed transactions
✗ Operational complexity

Pattern:
API Gateway → Services → Databases
     ↓
  Service Discovery
  Message Queue
  Logging/Monitoring

Database Sharding

Split data across multiple databases
- Range-based: User ID 1-1000 → DB1, 1001-2000 → DB2
- Hash-based: hash(user_id) % num_shards
- Directory-based: Lookup table maps to shard

Tradeoffs:
✓ Horizontal scaling
✗ Complex queries
✗ Operational overhead

Learning Checklist

  • Understand SQL SELECT with WHERE, JOIN
  • Can design normalized schema
  • Know when to use indexes
  • Understand NoSQL document stores
  • Built API with proper status codes
  • Know REST vs GraphQL trade-offs
  • Understand caching strategies
  • Know sharding and replication
  • Understand microservices patterns
  • Ready for architect role!

Source: https://roadmap.sh/sql, https://roadmap.sh/system-design, https://roadmap.sh/api-design