Claude Code Plugins

Community-maintained marketplace

Feedback

Design data architectures with modeling, pipelines, and governance

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name data-architecture
description Design data architectures with modeling, pipelines, and governance
version 2.0.0
sasmp_version 1.3.0
bonded_agent 06-data-architecture
bond_type PRIMARY_BOND
last_updated 2025-01

Data Architecture Skill

Purpose

Design data architectures including data models, pipeline designs, governance frameworks, and quality management for operational and analytical systems.


Parameters

Parameter Type Required Validation Default
data_domain string min: 20 chars -
design_type enum model|pipeline|governance|quality model
data_type enum operational|analytical|streaming operational
volume_tier enum small|medium|large|massive medium
output_format enum erd|yaml|json erd

Execution Flow

┌──────────────────────────────────────────────────────────┐
│ 1. VALIDATE: Check data domain and requirements          │
│ 2. DISCOVER: Identify data sources and entities          │
│ 3. MODEL: Create conceptual/logical/physical model       │
│ 4. DESIGN: Pipeline or governance framework              │
│ 5. QUALITY: Define data quality rules                    │
│ 6. VALIDATE: Check model consistency                     │
│ 7. DOCUMENT: Return data architecture                    │
└──────────────────────────────────────────────────────────┘

Retry Logic

Error Retry Backoff Max Attempts
VALIDATION_ERROR No - 1
MODEL_GENERATION_ERROR Yes 1s 2
FORMAT_ERROR Yes 500ms 3

Logging & Observability

log_points:
  - event: design_started
    level: info
    data: [design_type, data_type]
  - event: entities_identified
    level: info
    data: [entity_count, relationship_count]
  - event: quality_rules_defined
    level: info
    data: [rule_count, dimensions_covered]

metrics:
  - name: models_created
    type: counter
    labels: [design_type]
  - name: design_time_ms
    type: histogram
  - name: entity_count
    type: gauge

Error Handling

Error Code Description Recovery
E401 Missing data domain Request domain description
E402 Invalid relationships Highlight circular/missing refs
E403 Schema validation failed Show validation errors
E404 Unsupported volume tier Suggest architectural changes

Unit Test Template

test_cases:
  - name: "E-commerce data model"
    input:
      data_domain: "E-commerce order management"
      design_type: "model"
      output_format: "erd"
    expected:
      has_entities: true
      entities_include: ["Customer", "Order", "Product"]
      has_relationships: true
      valid_erd: true

  - name: "Analytics pipeline"
    input:
      data_domain: "Customer analytics"
      design_type: "pipeline"
      data_type: "analytical"
    expected:
      has_ingestion: true
      has_transformation: true
      has_serving: true

  - name: "Data quality rules"
    input:
      data_domain: "User profiles"
      design_type: "quality"
    expected:
      has_dimensions: true
      dimensions_include: ["completeness", "accuracy"]
      has_rules: true

Troubleshooting

Common Issues

Symptom Root Cause Resolution
Missing relationships Incomplete domain Add missing entities
Invalid ERD syntax Format error Validate Mermaid ERD
Missing quality rules Dimensions not specified Add quality dimensions

Debug Checklist

□ Is data domain clearly defined?
□ Are all entities identified?
□ Are relationships correctly typed?
□ Is output format valid?
□ Are quality dimensions covered?

Data Quality Dimensions

Dimension Example Rule
Completeness NOT NULL checks
Accuracy Regex validation
Consistency Referential integrity
Timeliness SLA monitoring
Uniqueness Primary key constraints

Integration

Component Trigger Data Flow
Agent 06 Design request Receives domain, returns model
Agent 04 Cloud data services Cloud data platform

Quality Standards

  • Normalized: 3NF for operational, denormalized for analytical
  • Documented: All entities and relationships described
  • Quality-first: DQ rules for all critical fields

Version History

Version Date Changes
2.0.0 2025-01 Production-grade: ERD, pipelines, DQ framework
1.0.0 2024-12 Initial release