| name | acsets-relational-thinking |
| description | ACSets (Attributed C-Sets) for categorical database design and DPO rewriting |
| version | 1.0.0 |
SKILL: ACSets Relational Thinking
Version: 2.0.0 Trit: 0 (ERGODIC) Domain: database, category-theory, rewriting Source: Topos Institute RelationalThinking Course + AlgebraicJulia
Overview
ACSets (Attributed C-Sets) are functors X: C → Set where C is a small category (schema). This skill integrates:
- RelationalThinking Course - Topos Institute's pedagogical approach
- DPO Rewriting - Double Pushout graph transformation
- Self-Play Loop - Query → Execute → Evaluate → Refine
- GF(3) Conservation - Triadic skill composition
Core Concept: C-Set as Functor
Schema (Category C) Instance (Functor X: C → Set)
┌─────────────────┐ ┌─────────────────────────────┐
│ E ──src──→ V │ X │ X(E) = {e1, e2, e3} │
│ ←──tgt── │ ───→ │ X(V) = {v1, v2} │
└─────────────────┘ │ X(src): e1↦v1, e2↦v1, e3↦v2│
│ X(tgt): e1↦v2, e2↦v2, e3↦v1│
└─────────────────────────────┘
Schema Definition
Basic Graph Schema
using Catlab.CategoricalAlgebra
@present SchGraph(FreeSchema) begin
V::Ob # Vertices (object)
E::Ob # Edges (object)
src::Hom(E, V) # Source morphism
tgt::Hom(E, V) # Target morphism
end
@acset_type Graph(SchGraph, index=[:src, :tgt])
Entity-Subtype Hierarchy (from RelationalThinking Ch8)
@present SchKitchen(FreeSchema) begin
Entity::Ob
Food::Ob
food_in_on::Hom(Food, Entity)
food_is_entity::Hom(Food, Entity)
Kitchenware::Ob
ware_in_on::Hom(Kitchenware, Entity)
ware_is_entity::Hom(Kitchenware, Entity)
BreadLoaf::Ob
bread_loaf_is_food::Hom(BreadLoaf, Food)
Knife::Ob
knife_is_ware::Hom(Knife, Kitchenware)
end
@acset_type Kitchen(SchKitchen)
DPO Rewriting (Double Pushout)
The Pattern: L ← K → R
L ←──l── K ──r──→ R
│ │ │
match│ │ │
↓ ↓ ↓
G ←───── D ──────→ H
pushout pushout
complement
- L = Find (what to match)
- K = Keep (overlap preserved)
- R = Replace (new structure)
- G = Host graph
- H = Result graph
Rule Definition
using AlgebraicRewriting
# Slice bread rule: adds BreadSlice when knife + loaf present
slice_bread = @migration(SchKitchen, begin
L => @join begin
loaf::BreadLoaf
knife::Knife
end
R => @join begin
loaf::BreadLoaf
slice::BreadSlice
food_in_on(bread_slice_is_food(slice)) == food_in_on(bread_loaf_is_food(loaf))
knife::Knife
end
K => @join begin
loaf::BreadLoaf
knife::Knife
end
end)
rule = make_rule(slice_bread, yKitchen)
Apply Rewrite
matches = get_matches(rule, state)
new_state = rewrite_match(rule, matches[1])
Self-Play Loop
The ACSet self-refinement monad:
Query₀ → Execute → Evaluate → Mine Patterns → Refine → Query₁ → ...
Implementation
struct SelfRefinementLoop
schema::Presentation
state::ACSet
patterns::Vector{Pattern}
generation::Int
end
function step!(loop::SelfRefinementLoop, rule::Rule)
# Find matches
matches = get_matches(rule, loop.state)
# Evaluate each match
evaluations = [evaluate_match(m, loop.patterns) for m in matches]
# Mine new patterns from successful evaluations
new_patterns = mine_patterns(evaluations)
append!(loop.patterns, new_patterns)
# Apply best match
best = argmax(e -> e.score, evaluations)
loop.state = rewrite_match(rule, matches[best.index])
loop.generation += 1
loop
end
Convergence Criterion
function converged(loop::SelfRefinementLoop; threshold=0.95)
recent = loop.patterns[end-10:end]
stability = std([p.score for p in recent])
stability < (1 - threshold)
end
GF(3) Integration
Trit Assignment
function acset_to_trits(g::Graph, seed::UInt64)
rng = SplitMix64(seed)
trits = Int[]
for e in parts(g, :E)
h = next_u64!(rng)
hue = (h >> 16 & 0xffff) / 65535.0 * 360
trit = hue < 60 || hue >= 300 ? 1 :
hue < 180 ? 0 : -1
push!(trits, trit)
end
trits
end
# Conservation check
gf3_conserved(trits) = sum(trits) % 3 == 0
Synergistic Triads Containing ACSets
clj-kondo-3color (-1) ⊗ acsets (0) ⊗ rama-gay-clojure (+1) = 0 ✓
three-match (-1) ⊗ acsets (0) ⊗ gay-mcp (+1) = 0 ✓
slime-lisp (-1) ⊗ acsets (0) ⊗ cider-clojure (+1) = 0 ✓
hatchery-papers (-1) ⊗ acsets (0) ⊗ frontend-design (+1) = 0 ✓
Orthogonal Bundles
ACSets participates in the STRUCTURAL bundle:
| Direction | Skills | Behavior |
|---|---|---|
| STRUCTURAL | clj-kondo(-1) ⊗ acsets(0) ⊗ rama-gay(+1) | Schema validation → transport → generation |
| TEMPORAL | three-match(-1) ⊗ unworld(0) ⊗ gay-mcp(+1) | Reduction → derivation → coloring |
| STRATEGIC | proofgeneral(-1) ⊗ glass-bead(0) ⊗ rubato(+1) | Verification → hopping → composition |
Visual Conventions (from RelationalThinking)
| Concept | Visual |
|---|---|
| Schema object | Gray circle |
| Schema morphism | Colored arrow (cyan=src, blue=tgt) |
| Instance element | Filled shape |
| Morphism mapping | Slot/containment |
| Pushout | Merged regions with distinct colors |
| DPO rule | Thought bubble (L,K,R) |
Commands
# Schema operations
just acset-schema FILE # Display schema diagram
just acset-instance FILE # Display instance elements
just acset-morphism F G # Show homomorphism F → G
# DPO rewriting
just acset-rule RULE STATE # Apply rewrite rule
just acset-matches RULE STATE # Find all matches
just acset-chain RULES STATE # Chain multiple rewrites
# Self-play
just acset-selfplay SCHEMA # Run self-refinement loop
just acset-patterns STATE # Mine patterns from state
just acset-converge SCHEMA # Run until convergence
# GF(3) operations
just acset-trits STATE SEED # Color state with seed
just acset-gf3 STATE # Check GF(3) conservation
just acset-triads # Show synergistic triads
References
Topos Institute
AlgebraicJulia
Papers
- Patterson et al. "Categorical data structures for technical computing" (Compositionality 2022)
- Aguinaldo et al. "Categorical Representation Language for Knowledge-Based Planning" (AAAI 2023)
Related Skills
rama-gay-clojure(+1) - Scalable backends with color tracingclj-kondo-3color(-1) - Schema validation/lintingglass-bead-game(0) - World hopping across schemasunworld(0) - Derivational chains for state evolutiondiscohy-streams(0) - DisCoPy categorical color streams
Skill Name: acsets-relational-thinking Type: Category-Theoretic Database / DPO Rewriting Trit: 0 (ERGODIC) GF(3): Conserved via triadic composition
Scientific Skill Interleaving
This skill connects to the K-Dense-AI/claude-scientific-skills ecosystem:
Annotated Data
- anndata [○] via bicomodule
Bibliography References
general: 734 citations in bib.duckdb
Cat# Integration
This skill maps to Cat# = Comod(P) as a bicomodule in the equipment structure:
Trit: 0 (ERGODIC)
Home: Span
Poly Op: ⊗
Kan Role: Adj
Color: #26D826
GF(3) Naturality
The skill participates in triads satisfying:
(-1) + (0) + (+1) ≡ 0 (mod 3)
This ensures compositional coherence in the Cat# equipment structure.