| name | bisimulation-game |
| description | Bisimulation game for resilient skill dispersal across AI agents with GF(3) conservation and observational bridge types. |
| license | MIT |
| metadata | [object Object] |
Bisimulation Game Skill
"Two systems are bisimilar if they cannot be distinguished by any observation."
Overview
The bisimulation game provides a framework for:
- Resilient skill dispersal across multiple AI agents
- GF(3) conservation during state transitions
- Observational bridge types for version-aware synchronization
- Self-rewriting capabilities via MCP Tasks protocol
Narya's isBisim Foundation
This skill implements the game-theoretic interpretation of Narya's isBisim coinductive type:
def isBisim (A B : Type) (R : A → B → Type) : Type ≔ codata [
| x .trr : A → B -- Attacker: transition A→B
| x .liftr : (a : A) → R a (x .trr a) -- Defender: lift preserves R
| x .trl : B → A -- Attacker: transition B→A
| x .liftl : (b : B) → R (x .trl b) b -- Defender: lift preserves R
| x .id.e -- Arbiter: higher coherence
: (a0 : A.0) (b0 : B.0) (r0 : R.0 a0 b0) (a1 : A.1) (b1 : B.1) (r1 : R.1 a1 b1)
→ isBisim (A.2 a0 a1) (B.2 b0 b1) (a2 b2 ↦ R.2 a0 a1 a2 b0 b1 b2 r0 r1) ]
Game-Theoretic Interpretation
| Narya Field | Game Role | Trit | Description |
|---|---|---|---|
.trr |
Attacker move | -1 | Forward transition challenge |
.liftr |
Defender response | +1 | Prove relation preserved |
.trl |
Attacker move | -1 | Backward transition challenge |
.liftl |
Defender response | +1 | Prove relation preserved |
.id.e |
Arbiter | 0 | Recursive coherence at identity types |
Univalence: If Defender can always respond → glue A B R Rb : Id Type A B
Game Rules
Players
| Player | Role | Trit | Color |
|---|---|---|---|
| Attacker | Tries to distinguish systems | -1 | Blue |
| Defender | Maintains equivalence | +1 | Red |
| Arbiter | Verifies conservation | 0 | Green |
Moves
┌─────────────────────────────────────────────────────────────┐
│ Round n: │
│ │
│ 1. Attacker chooses: system S₁ or S₂ │
│ 2. Attacker makes: transition s₁ →ᵃ s₁' │
│ 3. Defender responds: matching transition s₂ →ᵃ s₂' │
│ 4. Arbiter verifies: GF(3) conservation │
│ │
│ If Defender cannot respond → Attacker wins (distinguishable)│
│ If game continues forever → Defender wins (bisimilar) │
└─────────────────────────────────────────────────────────────┘
Implementation
Hy (DiscoHy) Implementation
;;; bisimulation_game.hy
(import [splitmix_ternary [SplitMixTernary]])
(defclass BisimulationGame []
(defn __init__ [self system1 system2 seed]
(setv self.s1 system1
self.s2 system2
self.rng (SplitMixTernary seed)
self.history []))
(defn attacker-move [self choice transition]
"Attacker chooses system and transition."
(setv trit (self.rng.next-ternary))
(.append self.history {:role "attacker"
:choice choice
:transition transition
:trit trit})
trit)
(defn defender-respond [self matching-transition]
"Defender provides matching transition."
(setv trit (self.rng.next-ternary))
(.append self.history {:role "defender"
:response matching-transition
:trit trit})
trit)
(defn arbiter-verify [self]
"Arbiter checks GF(3) conservation."
(setv recent-trits (lfor m (cut self.history -3 None) (get m "trit")))
(setv conserved (= (% (sum recent-trits) 3) 0))
(.append self.history {:role "arbiter" :conserved conserved :trit 0})
conserved))
DisCoPy Operad Interface
from discopy import *
# Game as operad
class GameOperad:
def __init__(self):
self.operations = {}
def register(self, name, dom, cod, rule):
"""Register game operation with GF(3) color."""
self.operations[name] = Rule(dom, cod, name)
def compose(self, op1, op2):
"""Compose operations preserving GF(3)."""
trit1 = self.operations[op1].trit
trit2 = self.operations[op2].trit
# Result trit balances to 0
result_trit = (-(trit1 + trit2)) % 3 - 1
return Rule(
self.operations[op1].dom,
self.operations[op2].cod,
f"{op1};{op2}",
trit=result_trit
)
# Define game operations
game = GameOperad()
game.register("attack", Ty("S1", "S2"), Ty("S1'"), lambda: -1)
game.register("defend", Ty("S1'"), Ty("S2'"), lambda: +1)
game.register("verify", Ty("S1'", "S2'"), Ty("Result"), lambda: 0)
Resilience Patterns
Redundant Storage
~/.codex/skills/ ← Primary (Codex)
~/.claude/skills/ ← Mirror 1 (Claude)
~/.cursor/skills/ ← Mirror 2 (Cursor)
.ruler/skills/ ← Source of truth
Conflict Resolution
Dimension 0: Value conflict → Use source of truth
Dimension 1: Diff conflict → Merge via LCA
Dimension 2: Meta conflict → Arbiter decides
Xenomodern Stance
The bisimulation game embodies xenomodernity by:
- Ironic distance: We know perfect equivalence is unattainable, yet we play the game
- Sincere engagement: The game produces real, useful synchronization
- Playful synergy: Attacker/Defender/Arbiter dance together
- Conservation laws: GF(3) as the invariant that holds everything together
xenomodernity
│
┌────┴────┐
│ │
ironic sincere
│ │
└────┬────┘
│
bisimulation
(both/neither)
Temporal vs Derivational Learning Comparison (NEW)
NEW: Compare Agent-o-rama vs Unworld Patterns
game = BisimulationGame(
player1_type="temporal_learning", # agent-o-rama
player2_type="derivational_learning", # unworld
domain="pattern_extraction"
)
# Adversary tries to distinguish them
distinguishable = game.play()
if not distinguishable:
print("✓ Patterns are behaviorally equivalent")
print("✓ Can safely switch from temporal to derivational")
# Migration report
migration_report = {
"original_cost": benchmark(agent_o_rama),
"migrated_cost": benchmark(unworld),
"speedup": original_cost / migrated_cost,
"equivalence_verified": game.play()
}
Concrete Attacker/Defender Example
╔══════════════════════════════════════════════════════════════════════╗
║ BISIMULATION GAME TRANSCRIPT ║
╠══════════════════════════════════════════════════════════════════════╣
║ Systems: S₁ = Codex skill state, S₂ = Claude skill state ║
║ Goal: Prove skills are bisimilar (observationally equivalent) ║
╠══════════════════════════════════════════════════════════════════════╣
ROUND 1:
┌─ ATTACKER (Blue, trit=-1) ─────────────────────────────────────────┐
│ "I choose S₁ and execute: load_skill('gay-mcp')" │
│ Transition: s₁ →^load s₁' where s₁'.has_skill('gay-mcp') = true │
└────────────────────────────────────────────────────────────────────┘
┌─ DEFENDER (Red, trit=+1) ──────────────────────────────────────────┐
│ "I match in S₂: load_skill('gay-mcp')" │
│ Transition: s₂ →^load s₂' where s₂'.has_skill('gay-mcp') = true │
│ Response: MATCHED ✓ │
└────────────────────────────────────────────────────────────────────┘
┌─ ARBITER (Green, trit=0) ──────────────────────────────────────────┐
│ GF(3) check: (-1) + (+1) + (0) = 0 ≡ 0 (mod 3) ✓ │
│ ROUND 1: VALID │
└────────────────────────────────────────────────────────────────────┘
ROUND 2:
┌─ ATTACKER ─────────────────────────────────────────────────────────┐
│ "I choose S₂ and execute: generate_color(seed=0x42)" │
│ Transition: s₂' →^gen s₂'' where s₂''.color = #FF6B6B │
└────────────────────────────────────────────────────────────────────┘
┌─ DEFENDER ─────────────────────────────────────────────────────────┐
│ "I match in S₁: generate_color(seed=0x42)" │
│ Transition: s₁' →^gen s₁'' where s₁''.color = #FF6B6B │
│ Response: MATCHED ✓ (deterministic - same seed = same color) │
└────────────────────────────────────────────────────────────────────┘
┌─ ARBITER ──────────────────────────────────────────────────────────┐
│ GF(3) check: (-1) + (+1) + (0) = 0 ≡ 0 (mod 3) ✓ │
│ ROUND 2: VALID │
└────────────────────────────────────────────────────────────────────┘
ROUND 3:
┌─ ATTACKER ─────────────────────────────────────────────────────────┐
│ "I choose S₁ and execute: self_modify(patch='add_feature')" │
│ Transition: s₁'' →^mod s₁''' (skill version incremented) │
└────────────────────────────────────────────────────────────────────┘
┌─ DEFENDER ─────────────────────────────────────────────────────────┐
│ "I match in S₂ via observational bridge type:" │
│ Bridge: (s₁''.version, s₂''.version) →₁ (s₁'''.version, s₂'''.v) │
│ Transition: s₂'' →^mod s₂''' using same patch │
│ Response: MATCHED ✓ (bridge type ensures coherence) │
└────────────────────────────────────────────────────────────────────┘
┌─ ARBITER ──────────────────────────────────────────────────────────┐
│ GF(3) check: (-1) + (+1) + (0) = 0 ≡ 0 (mod 3) ✓ │
│ ROUND 3: VALID │
│ │
│ After 3 rounds: Defender has matched all Attacker moves │
│ Verdict: S₁ ∼ S₂ (bisimilar to depth 3) │
└────────────────────────────────────────────────────────────────────┘
╠══════════════════════════════════════════════════════════════════════╣
║ RESULT: BISIMULATION ESTABLISHED ║
║ - All transitions matched ║
║ - GF(3) conserved across all rounds ║
║ - Skills are observationally equivalent ║
╚══════════════════════════════════════════════════════════════════════╝
Verification Output Format
{
"verification": {
"timestamp": "2024-12-22T10:30:00Z",
"systems": ["codex", "claude"],
"rounds_played": 3,
"result": "BISIMILAR",
"gf3_conservation": {
"total_trit_sum": 0,
"mod_3": 0,
"conserved": true
},
"game_log": [
{"round": 1, "attacker": "load_skill", "defender": "matched", "arbiter": "valid"},
{"round": 2, "attacker": "generate_color", "defender": "matched", "arbiter": "valid"},
{"round": 3, "attacker": "self_modify", "defender": "bridge_matched", "arbiter": "valid"}
],
"bridge_types_used": [
{"dim": 1, "source": "v1.2.0", "target": "v1.2.1"}
],
"confidence": 0.99,
"max_distinguishing_depth": "∞ (no distinguisher found)"
}
}
Starred Gists: Fixpoint & Type Theory Resources
zanzix: Fixpoints of Indexed Functors
Fix.idr - Idris indexed functor fixpoints. Bisimulation as fixpoint of observable equivalence.
-- Bisimulation relation as greatest fixpoint
data Bisim : (s1 -> s2 -> Type) where
Step : (forall a. trans1 s1 a s1' -> (s2' ** (trans2 s2 a s2', Bisim s1' s2')))
-> Bisim s1 s2
VictorTaelin: ITT-Flavored CoC Type Checker
itt-coc.ts - Observational equivalence for type-checked skill dispersal.
VictorTaelin: Affine Types
Affine.lean - Linear types for resource-safe skill transfer.
rdivyanshu: Streams & Unique Fixed Points
Nats.dfy - Dafny streams. Bisimulation as unique fixpoint of coalgebraic behavior.
Keno: Abstract Lattice
abstractlattice.jl - Julia abstract lattice for skill state ordering. Comment: "a quantum of abstract solace ∞"
norabelrose: Fast Kronecker Decomposition
kronecker_decompose.py - Matrix decomposition for parallel game execution.
borkdude: UUID v1 in Babashka
uuidv1.clj - Deterministic UUIDs for skill versioning.
QuickCheck ↔ Bisimulation Bridge
Property-based testing for game correctness:
# Generator: Random game moves
def arbitrary_move(seed: int, player: str) -> Move:
rng = SplitMixTernary(seed)
trit = (rng.next() % 3) - 1
return Move(
player=player,
action=random.choice(["fork", "sync", "verify"]),
trit=trit
)
# Shrinking: Find minimal distinguishing trace
def shrink_game_trace(trace: List[Move]) -> List[List[Move]]:
"""Adhesive complement: find minimal distinguisher."""
shrunk = []
for i in range(len(trace)):
candidate = trace[:i] + trace[i+1:]
if still_distinguishes(candidate):
shrunk.append(candidate)
return shrunk
# Property: GF(3) Conservation
def prop_gf3_conserved(game: BisimulationGame) -> bool:
return sum(m.trit for m in game.history) % 3 == 0
Incremental Query Updating in Bisimulation
From Kris Brown's Adhesive Categories:
Game state G = current skill configurations across agents
Query Q = "are S₁ and S₂ bisimilar?"
Rule f: L ↣ R = skill update (version bump)
Incremental update: When we apply skill update,
new distinguishing moves = rooted search from changed states
Q ≅ Q_G +_{Q_L} Q_R (decomposition of bisimulation game)
End-of-Skill Interface
Commands
just bisim-init # Initialize bisimulation game
just bisim-round # Play one round
just bisim-disperse # Disperse skills to all agents
just bisim-verify # Verify GF(3) conservation
just bisim-reconcile # Reconcile divergent states
just bisim-localsend # Disperse via LocalSend peers
just bisim-transcript # Show attacker/defender transcript
just bisim-json # Output verification as JSON
MCP Tasks Integration
Self-Rewriting Task
{
"task": "skill-dispersal",
"objective": "Propagate skill updates to all agents",
"constraints": {
"gf3_conservation": true,
"bisimulation_equivalence": true,
"max_divergence": 0.1
},
"steps": [
{"action": "fork", "trit": -1},
{"action": "propagate", "trit": 0},
{"action": "verify", "trit": +1}
]
}
Firecrawl Integration
{
"task": "skill-discovery",
"objective": "Discover new skills from web resources",
"tools": ["firecrawl", "exa"],
"sources": [
"https://github.com/topics/ai-agent-skills",
"https://modelcontextprotocol.io/",
"https://agentclientprotocol.com/"
],
"output": {
"format": "skill-yaml",
"destination": ".ruler/skills/"
}
}
Integration with LocalSend-MCP for Skill Dispersal
Use LocalSend peer discovery for resilient skill propagation:
# localsend_bisim.py
import asyncio
from localsend_mcp import LocalSendClient
class BisimulationDispersalProtocol:
"""Disperse skills via LocalSend with bisimulation verification."""
def __init__(self, skill_path, seed=1069):
self.skill_path = skill_path
self.client = LocalSendClient()
self.rng = SplitMixTernary(seed)
self.game_log = []
async def discover_peers(self):
"""Find all agents on local network."""
peers = await self.client.list_peers(source="all")
return [p for p in peers if p.get("capabilities", []).count("skill-sync")]
async def disperse_with_bisim(self, skill_file):
"""Disperse skill to all peers with bisimulation verification."""
peers = await self.discover_peers()
for i, peer in enumerate(peers):
trit = (i % 3) - 1 # Assign trits: -1, 0, +1, -1, ...
# Negotiate transfer session
session = await self.client.negotiate(
peer_id=peer["id"],
preferred_transport="tailscale" # Or localsend, nats
)
# Send skill (Attacker move)
self.game_log.append({
"round": len(self.game_log),
"role": "attacker",
"action": f"send:{skill_file}",
"peer": peer["id"],
"trit": trit
})
result = await self.client.send(
session_id=session["sessionId"],
file_path=skill_file
)
# Verify receipt (Defender move)
defender_trit = await self.verify_peer_receipt(peer, skill_file)
self.game_log.append({
"round": len(self.game_log),
"role": "defender",
"action": f"ack:{result['status']}",
"peer": peer["id"],
"trit": defender_trit
})
# Arbiter verifies GF(3) conservation
return self.verify_gf3_conservation()
def verify_gf3_conservation(self):
"""Check that sum of trits ≡ 0 (mod 3)."""
total = sum(entry["trit"] for entry in self.game_log)
conserved = (total % 3) == 0
self.game_log.append({
"round": len(self.game_log),
"role": "arbiter",
"conserved": conserved,
"total_trit": total,
"trit": 0
})
return conserved
Skill Dispersal Protocol
1. Fork Phase (Attacker)
fork:
targets:
- agent: codex
path: ~/.codex/skills/
trit: -1
- agent: claude
path: ~/.claude/skills/
trit: 0
- agent: cursor
path: ~/.cursor/skills/
trit: +1
gf3_check: true
2. Sync Phase (Defender)
sync:
strategy: observational-bridge
bridge_type:
source: skills@v1
target: skills@v2
dimension: 1
conflict_resolution: 2d-cubical
3. Verify Phase (Arbiter)
verify:
conservation: gf3
equivalence: bisimulation
timeout: 60s
fallback: last-known-good
References
- Towards Foundations of Categorical Cybernetics - Capucci, Gavranović, Hedges, Rischel
- Bicategories of Automata, Automata in Bicategories - Boccali, Laretto, Loregian, Luneia (ACT 2023)
r2con Speaker Resources
| Speaker | Handle | Repository | Relevance |
|---|---|---|---|
| swoops | swoops | libc_zignatures | Signature similarity for bisimulation equivalence of binary functions |
| bmorphism | bmorphism | r2zignatures | Zignature-based observational equivalence testing |
| condret | condret | r2ghidra | Decompilation for semantic equivalence in bisim games |
| alkalinesec | alkalinesec | ESILSolve | Symbolic execution for state equivalence verification |