Claude Code Plugins

Community-maintained marketplace

Feedback

catsharp-galois

@plurigrid/asi
0
0

CatSharp Scale Galois Connections between agent-o-rama and Plurigrid ACT via Mazzola's categorical music theory

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name catsharp-galois
description CatSharp Scale Galois Connections between agent-o-rama and Plurigrid ACT via Mazzola's categorical music theory
trit 0
color #D8D826

CatSharp Galois Skill

Trit: 0 (ERGODIC - bridge) Color: Yellow (#D8D826)

Overview

Establishes Galois adjunction α ⊣ γ between conceptual spaces:

           α (abstract)
    HERE ─────────────→ ELSEWHERE
      ↑                    │
      │                    │ γ (concretize)
      │    ┌──────────┐    │
      └────│ CatSharp │────┘
           │  Scale   │
           │ (Bridge) │
           └──────────┘
           
    GF(3): (+1) + (0) + (-1) = 0 ✓
  • HERE: agent-o-rama Topos (local operations)
  • ELSEWHERE: Plurigrid ACT (global cognitive category theory)
  • BRIDGE: CatSharp Scale (Mazzola's categorical music theory)

CatSharp Scale Mapping

Pitch classes ℤ₁₂ map to GF(3) trits:

Trit Pitch Classes Chord Type Hue Range
+1 (PLUS) {0, 4, 8} Augmented triad 0-60°, 300-360°
0 (ERGODIC) {3, 6, 9} Diminished 7th 60-180°
-1 (MINUS) {2, 5, 7, 10, 11} Fifths cycle 180-300°

Tritone: The Möbius Axis

The tritone (6 semitones) is the unique self-inverse interval:

6 + 6 = 12 ≡ 0 (mod 12)

This mirrors GF(3) Möbius inversion where μ(3)² = 1.

Galois Connection API

(defn α-abstract
  "Abstraction functor: agent-o-rama → Plurigrid ACT"
  [here-concept]
  (let [trit (or (:trit here-concept)
                 (pitch-class->trit (hue->pitch-class (:H here-concept))))]
    {:type :elsewhere
     :hyperedge (case trit
                  1  :generation
                  0  :verification
                  -1 :transformation)
     :source-trit trit}))

(defn γ-concretize
  "Concretization functor: Plurigrid ACT → agent-o-rama"
  [elsewhere-concept]
  (let [trit (case (:hyperedge elsewhere-concept)
               :generation 1
               :verification 0
               :transformation -1)]
    {:type :here
     :trit trit
     :H (pitch-class->hue (first (trit->pitch-classes trit)))}))

;; Adjunction verification
(defn verify-galois [h e]
  (let [αh (α-abstract h)
        γe (γ-concretize e)]
    (= (= (:hyperedge αh) (:hyperedge e))
       (= (:trit h) (:trit γe)))))

Hyperedge Types

Hyperedge Trit HERE Layer ELSEWHERE Operation
:generation +1 α.Operadic ACT.cogen.generate
:verification 0 α.∞-Categorical ACT.cogen.verify
:transformation -1 α.Cohomological ACT.cogen.transform

Color ↔ Pitch Conversion

function hue_to_pitch_class(h::Float64)::Int
    mod(round(Int, h / 30.0), 12)
end

function pitch_class_to_hue(pc::Int)::Float64
    mod(pc, 12) * 30.0 + 15.0
end

function pitch_class_to_trit(pc::Int)::Int
    pc = mod(pc, 12)
    if pc ∈ [0, 4, 8]      # Augmented
        return 1
    elseif pc ∈ [3, 6, 9]  # Diminished
        return 0
    else                    # Fifths
        return -1
    end
end

GF(3) Triads

catsharp-galois (0) ⊗ gay-mcp (-1) ⊗ ordered-locale (+1) = 0 ✓
catsharp-galois (0) ⊗ rubato-composer (-1) ⊗ topos-of-music (+1) = 0 ✓

Commands

# Run genesis with CatSharp bridge
just genesis-catsharp seed=0x42D

# Verify Galois adjunction
just galois-verify here=agent-o-rama elsewhere=plurigrid-act

# Sonify CatSharp scale
just catsharp-play pitch-classes="0 4 7"

Related Skills

  • gay-mcp (-1): SplitMix64 color generation
  • ordered-locale (+1): Frame structure
  • rubato-composer (-1): Mazzola's Rubato system
  • topos-of-music (+1): Full Mazzola formalization

References

  • Mazzola, G. The Topos of Music (2002)
  • Noll, T. "Neo-Riemannian Theory and the PLR Group"
  • Heunen & van der Schaaf. "Ordered Locales" (2024)

Scientific Skill Interleaving

This skill connects to the K-Dense-AI/claude-scientific-skills ecosystem:

Graph Theory

  • networkx [○] via bicomodule
    • Universal graph hub

Bibliography References

  • category-theory: 139 citations in bib.duckdb

Cat# Integration

This skill maps to Cat# = Comod(P) as a bicomodule in the equipment structure:

Trit: 0 (ERGODIC)
Home: Prof
Poly Op: ⊗
Kan Role: Adj
Color: #26D826

GF(3) Naturality

The skill participates in triads satisfying:

(-1) + (0) + (+1) ≡ 0 (mod 3)

This ensures compositional coherence in the Cat# equipment structure.