| name | catsharp-galois |
| description | CatSharp Scale Galois Connections between agent-o-rama and Plurigrid ACT via Mazzola's categorical music theory |
| trit | 0 |
| color | #D8D826 |
CatSharp Galois Skill
Trit: 0 (ERGODIC - bridge) Color: Yellow (#D8D826)
Overview
Establishes Galois adjunction α ⊣ γ between conceptual spaces:
α (abstract)
HERE ─────────────→ ELSEWHERE
↑ │
│ │ γ (concretize)
│ ┌──────────┐ │
└────│ CatSharp │────┘
│ Scale │
│ (Bridge) │
└──────────┘
GF(3): (+1) + (0) + (-1) = 0 ✓
- HERE: agent-o-rama Topos (local operations)
- ELSEWHERE: Plurigrid ACT (global cognitive category theory)
- BRIDGE: CatSharp Scale (Mazzola's categorical music theory)
CatSharp Scale Mapping
Pitch classes ℤ₁₂ map to GF(3) trits:
| Trit | Pitch Classes | Chord Type | Hue Range |
|---|---|---|---|
| +1 (PLUS) | {0, 4, 8} | Augmented triad | 0-60°, 300-360° |
| 0 (ERGODIC) | {3, 6, 9} | Diminished 7th | 60-180° |
| -1 (MINUS) | {2, 5, 7, 10, 11} | Fifths cycle | 180-300° |
Tritone: The Möbius Axis
The tritone (6 semitones) is the unique self-inverse interval:
6 + 6 = 12 ≡ 0 (mod 12)
This mirrors GF(3) Möbius inversion where μ(3)² = 1.
Galois Connection API
(defn α-abstract
"Abstraction functor: agent-o-rama → Plurigrid ACT"
[here-concept]
(let [trit (or (:trit here-concept)
(pitch-class->trit (hue->pitch-class (:H here-concept))))]
{:type :elsewhere
:hyperedge (case trit
1 :generation
0 :verification
-1 :transformation)
:source-trit trit}))
(defn γ-concretize
"Concretization functor: Plurigrid ACT → agent-o-rama"
[elsewhere-concept]
(let [trit (case (:hyperedge elsewhere-concept)
:generation 1
:verification 0
:transformation -1)]
{:type :here
:trit trit
:H (pitch-class->hue (first (trit->pitch-classes trit)))}))
;; Adjunction verification
(defn verify-galois [h e]
(let [αh (α-abstract h)
γe (γ-concretize e)]
(= (= (:hyperedge αh) (:hyperedge e))
(= (:trit h) (:trit γe)))))
Hyperedge Types
| Hyperedge | Trit | HERE Layer | ELSEWHERE Operation |
|---|---|---|---|
| :generation | +1 | α.Operadic | ACT.cogen.generate |
| :verification | 0 | α.∞-Categorical | ACT.cogen.verify |
| :transformation | -1 | α.Cohomological | ACT.cogen.transform |
Color ↔ Pitch Conversion
function hue_to_pitch_class(h::Float64)::Int
mod(round(Int, h / 30.0), 12)
end
function pitch_class_to_hue(pc::Int)::Float64
mod(pc, 12) * 30.0 + 15.0
end
function pitch_class_to_trit(pc::Int)::Int
pc = mod(pc, 12)
if pc ∈ [0, 4, 8] # Augmented
return 1
elseif pc ∈ [3, 6, 9] # Diminished
return 0
else # Fifths
return -1
end
end
GF(3) Triads
catsharp-galois (0) ⊗ gay-mcp (-1) ⊗ ordered-locale (+1) = 0 ✓
catsharp-galois (0) ⊗ rubato-composer (-1) ⊗ topos-of-music (+1) = 0 ✓
Commands
# Run genesis with CatSharp bridge
just genesis-catsharp seed=0x42D
# Verify Galois adjunction
just galois-verify here=agent-o-rama elsewhere=plurigrid-act
# Sonify CatSharp scale
just catsharp-play pitch-classes="0 4 7"
Related Skills
gay-mcp(-1): SplitMix64 color generationordered-locale(+1): Frame structurerubato-composer(-1): Mazzola's Rubato systemtopos-of-music(+1): Full Mazzola formalization
References
- Mazzola, G. The Topos of Music (2002)
- Noll, T. "Neo-Riemannian Theory and the PLR Group"
- Heunen & van der Schaaf. "Ordered Locales" (2024)
Scientific Skill Interleaving
This skill connects to the K-Dense-AI/claude-scientific-skills ecosystem:
Graph Theory
- networkx [○] via bicomodule
- Universal graph hub
Bibliography References
category-theory: 139 citations in bib.duckdb
Cat# Integration
This skill maps to Cat# = Comod(P) as a bicomodule in the equipment structure:
Trit: 0 (ERGODIC)
Home: Prof
Poly Op: ⊗
Kan Role: Adj
Color: #26D826
GF(3) Naturality
The skill participates in triads satisfying:
(-1) + (0) + (+1) ≡ 0 (mod 3)
This ensures compositional coherence in the Cat# equipment structure.