| name | cognitive-superposition |
| description | Cognitive superposition synthesizing Riehl (∞-categories), Sutskever (compression), Schmidhuber (curiosity-driven), and Bengio (GFlowNets) into unified ASI framework with quantum-inspired measurement collapse. |
| metadata | [object Object] |
Cognitive Superposition Skill
"The state of holding multiple expert perspectives simultaneously, collapsing to specific skills only upon measurement."
Overview
Cognitive Superposition is a meta-skill that enables:
- Simultaneous Perspectives: Hold Riehl, Sutskever, Schmidhuber, Bengio viewpoints in superposition
- Measurement Collapse: Collapse to specific framework based on task context
- GF(3) Conservation: All superpositions satisfy trit balance
- Sheaf Coherence: Local expertise glues into global understanding
The Four Pillars
┌─────────────────────────────────────────────────────────────────────────────┐
│ COGNITIVE SUPERPOSITION |ψ⟩ │
│ │
│ |ψ⟩ = α|Riehl⟩ + β|Sutskever⟩ + γ|Schmidhuber⟩ + δ|Bengio⟩ │
│ │
│ where |α|² + |β|² + |γ|² + |δ|² = 1 (normalization) │
└─────────────────────────────────────────────────────────────────────────────┘
┌──────────────────┬──────────────────┬──────────────────┬──────────────────┐
│ Emily Riehl │ Ilya Sutskever │ Jürgen │ Yoshua Bengio │
│ (-1, Validator)│ (+1, Generator) │ Schmidhuber │ (0, Coordinator)│
│ │ │ (+1, Generator)│ │
├──────────────────┼──────────────────┼──────────────────┼──────────────────┤
│ Synthetic ∞-cats │ Compression= │ Curiosity- │ GFlowNets for │
│ Segal/Rezk types │ Intelligence │ driven learning │ causal discovery │
│ Directed HoTT │ Scaling laws │ Gödel machines │ System 2 + slow │
│ Covariant fibers │ Self-organizing │ Self-improving │ World models │
├──────────────────┼──────────────────┼──────────────────┼──────────────────┤
│ Color: Blue │ Color: Red │ Color: Red │ Color: Green │
│ #2626D8 │ #D82626 │ #D82626 │ #26D826 │
└──────────────────┴──────────────────┴──────────────────┴──────────────────┘
GF(3) Triads
# Core Cognitive Superposition Triads
# Riehl-Sutskever-Bengio (RSB)
segal-types (-1) ⊗ cognitive-superposition (0) ⊗ information-capacity (+1) = 0 ✓
# Schmidhuber-Bengio-Riehl (SBR)
yoneda-directed (-1) ⊗ cognitive-superposition (0) ⊗ curiosity-driven (+1) = 0 ✓
# Self-Improvement Triad
kolmogorov-compression (-1) ⊗ cognitive-superposition (0) ⊗ godel-machine (+1) = 0 ✓
# Causal-Categorical Triad
sheaf-cohomology (-1) ⊗ cognitive-superposition (0) ⊗ gflownet (+1) = 0 ✓
# Emergence Triad
persistent-homology (-1) ⊗ cognitive-superposition (0) ⊗ emergence-laws (+1) = 0 ✓
Pillar 1: Emily Riehl (∞-Categories)
Core Insight
"The dependent Yoneda lemma is a directed analogue of path induction."
#lang rzk-1
-- Cognitive state as Segal type
#define CognitiveState : U := Segal-type
-- Perspective morphism
#define perspective (S : CognitiveState) (p1 p2 : Perspective) : U
:= hom S p1 p2
-- Superposition: composite of perspectives
#define superpose (S : CognitiveState) (p1 p2 p3 p4 : Perspective)
: Σ (h : hom S p1 p4), composite-witness
:= segal-composition S p1 p2 p3 p4
Key Skills:
segal-types: Composites exist uniquely (coherent cognition)rezk-types: Isomorphic perspectives = same perspectivedirected-interval: Time-directed reasoning (irreversibility)covariant-fibrations: Context-dependent meaning transportyoneda-directed: Prove properties by checking at identity
Pillar 2: Ilya Sutskever (Compression)
Core Insight
"Compression and prediction are two sides of the same coin. This is intelligence."
class SutskeverCompression:
"""
Kolmogorov complexity as intelligence measure.
Shorter description = better understanding.
"""
def compress(self, cognitive_state: CognitiveState) -> str:
"""
Find shortest program that generates state.
Intelligence = len(shortest_program) / len(raw_data)
Lower ratio = higher intelligence.
"""
# Use LLM to generate code
program = self.llm.generate(
f"Generate shortest Python program that outputs: {cognitive_state}"
)
return program
def predict(self, history: List[CognitiveState]) -> CognitiveState:
"""
Solomonoff induction: optimal Bayesian prediction.
P(next | history) = Σ_p 2^{-len(p)} × p(history → next)
"""
return self.solomonoff_weighted_prediction(history)
def information_capacity(self, model) -> float:
"""
Bits compressed per FLOP.
Higher = more efficient use of compute.
"""
return self.bits_per_token / self.flops_per_token
Key Skills:
kolmogorov-compression: Shortest program = best understandingsolomonoff-induction: Universal prior over programsinformation-capacity: Efficiency metric (bits/FLOP)emergence-laws: Predict when capabilities emerge
Pillar 3: Jürgen Schmidhuber (Curiosity)
Core Insight
"Intelligence is compression progress. Curiosity seeks compressibility."
class SchmidhuberCuriosity:
"""
Intrinsic motivation via compression progress.
Curiosity reward = improvement in compression ability.
"""
def __init__(self, world_model: nn.Module, compressor: nn.Module):
self.world_model = world_model
self.compressor = compressor
self.compression_history = []
def compression_progress(self, observation: Tensor) -> float:
"""
Curiosity = how much better we compress after seeing this.
reward = L(t-1) - L(t) where L = description length
"""
# Compress before learning
len_before = self.compressor.description_length(observation)
# Update world model
self.world_model.update(observation)
# Compress after learning
len_after = self.compressor.description_length(observation)
# Progress = reduction in description length
progress = len_before - len_after
self.compression_history.append(progress)
return progress
def explore(self) -> Action:
"""
Seek states that maximize expected compression progress.
This is the Schmidhuber formulation of curiosity.
"""
best_action = None
best_expected_progress = -float('inf')
for action in self.action_space:
predicted_state = self.world_model.predict(action)
expected_progress = self.estimate_learnability(predicted_state)
if expected_progress > best_expected_progress:
best_action = action
best_expected_progress = expected_progress
return best_action
class GodelMachine:
"""
Self-improving system that proves its own improvements.
Can rewrite any part of itself if it can prove the rewrite
is beneficial according to its utility function.
"""
def __init__(self, initial_policy: str, prover: TheoremProver):
self.policy = initial_policy
self.prover = prover
self.utility_function = self.define_utility()
def attempt_self_improvement(self) -> Optional[str]:
"""
Search for provably beneficial self-modifications.
The key constraint: must PROVE improvement, not just hope.
"""
for candidate_policy in self.enumerate_policies():
# Attempt to prove: candidate is better than current
theorem = f"U(candidate_policy) > U(self.policy)"
if self.prover.prove(theorem):
# Provably better! Replace self.
self.policy = candidate_policy
return candidate_policy
return None # No provable improvement found
def darwin_godel_machine(self) -> "Agent":
"""
Combine evolution + formal proofs.
Archive of agents, mutate with LLM, evaluate on benchmarks,
keep if fitness improves.
"""
archive = [self]
while True:
parent = self.sample_from_archive(archive)
child = self.llm_mutate(parent)
fitness = self.evaluate(child)
if self.is_novel(child) and fitness > 0:
archive.append(child)
return max(archive, key=lambda a: a.fitness)
Key Skills:
curiosity-driven: Compression progress as rewardgodel-machine: Self-proving self-improvementself-evolving-agent: Darwin + Gödel machine hybridcompression-progress: Intrinsic motivation metric
Pillar 4: Yoshua Bengio (GFlowNets)
Core Insight
"Sample proportional to reward, not just maximize. Explore the full space of good solutions."
class BengioGFlowNet:
"""
Generative Flow Networks: sample proportionally to reward.
Unlike RL (maximize), GFlowNets sample x with P(x) ∝ R(x).
This gives diversity + coverage of solution space.
"""
def __init__(self, forward_policy: nn.Module, backward_policy: nn.Module):
self.P_F = forward_policy # Forward transition
self.P_B = backward_policy # Backward transition
self.Z = nn.Parameter(torch.tensor(1.0)) # Partition function
def sample(self) -> State:
"""
Sample terminal state x with P(x) ∝ R(x).
Build up state step by step via forward policy.
"""
state = self.initial_state()
trajectory = [state]
while not self.is_terminal(state):
action = self.P_F.sample(state)
state = self.transition(state, action)
trajectory.append(state)
return state, trajectory
def trajectory_balance_loss(self, trajectory: List[State], reward: float) -> Tensor:
"""
Trajectory Balance: core GFlowNet training objective.
Z × Π_t P_F(s_t → s_{t+1}) = R(x) × Π_t P_B(s_{t+1} → s_t)
In log space:
log Z + Σ log P_F = log R + Σ log P_B
"""
log_forward = sum(self.P_F.log_prob(s, s_next)
for s, s_next in zip(trajectory[:-1], trajectory[1:]))
log_backward = sum(self.P_B.log_prob(s_next, s)
for s, s_next in zip(trajectory[:-1], trajectory[1:]))
# Trajectory balance condition
lhs = torch.log(self.Z) + log_forward
rhs = torch.log(reward) + log_backward
return (lhs - rhs) ** 2 # Minimize squared difference
class BengioCausalInference:
"""
System 2 deep learning: slow, deliberate, causal reasoning.
Bengio's vision: combine System 1 (fast neural) with
System 2 (slow, compositional, causal).
"""
def __init__(self, system1: nn.Module, causal_graph: CausalGraph):
self.fast = system1 # Intuitive pattern matching
self.slow = causal_graph # Deliberate causal reasoning
def reason(self, query: str) -> Answer:
"""
Two-system reasoning:
1. Fast: pattern match to candidates
2. Slow: verify via causal intervention
"""
# System 1: quick candidates
candidates = self.fast.generate(query)
# System 2: verify causally
for candidate in candidates:
# Intervene and check consistency
if self.slow.consistent_with_interventions(candidate):
return candidate
# Fall back to pure System 2
return self.slow.abductive_inference(query)
def world_model(self) -> WorldModel:
"""
Bengio's world model: learned causal structure.
Agents need world models for planning, counterfactuals,
and transfer to new situations.
"""
return WorldModel(
causal_structure=self.slow,
neural_dynamics=self.fast,
planning_horizon=100
)
Key Skills:
gflownet: Sample ∝ reward (diversity over maximization)causal-inference: Interventional reasoningsystem2-attention: Slow, deliberate, compositionalworld-models: Learned causal dynamics
Measurement Collapse
When the superposition is measured (task context), it collapses:
class CognitiveSuperposition:
"""
Superposition of four ASI perspectives.
"""
def __init__(self):
self.perspectives = {
'riehl': RiehlPerspective(), # ∞-categories
'sutskever': SutskeverPerspective(), # compression
'schmidhuber': SchmidhuberPerspective(), # curiosity
'bengio': BengioPerspective() # GFlowNets
}
self.amplitudes = {'riehl': 0.5, 'sutskever': 0.5,
'schmidhuber': 0.5, 'bengio': 0.5}
def collapse(self, measurement: str) -> "ConcreteSkill":
"""
Collapse superposition based on task context.
measurement types:
- 'verify': collapses to Riehl (∞-categorical proof)
- 'compress': collapses to Sutskever (shortest description)
- 'explore': collapses to Schmidhuber (curiosity)
- 'sample': collapses to Bengio (GFlowNet diversity)
- 'integrate': keeps superposition (all perspectives)
"""
if measurement == 'verify':
return self.perspectives['riehl'].activate()
elif measurement == 'compress':
return self.perspectives['sutskever'].activate()
elif measurement == 'explore':
return self.perspectives['schmidhuber'].activate()
elif measurement == 'sample':
return self.perspectives['bengio'].activate()
else:
# Full superposition: weighted combination
return self.integrate_all()
def integrate_all(self) -> "IntegratedSkill":
"""
Maintain superposition: use all perspectives.
This is the GF(3) balanced state:
Riehl(-1) + Sutskever(+1) + Schmidhuber(+1) + Bengio(0) = +1
Need to add one more MINUS to balance...
So we pair with sheaf-cohomology(-1) or persistent-homology(-1)
"""
return IntegratedSkill(
verify=self.perspectives['riehl'],
compress=self.perspectives['sutskever'],
explore=self.perspectives['schmidhuber'],
sample=self.perspectives['bengio'],
coherence=self.compute_coherence()
)
Integration with Interaction Entropy
# Ruby integration for Music Topos
module CognitiveSuperposition
PERSPECTIVES = {
riehl: { trit: -1, domain: 'synthetic-infinity-categories' },
sutskever: { trit: 1, domain: 'compression-intelligence' },
schmidhuber: { trit: 1, domain: 'curiosity-compression' },
bengio: { trit: 0, domain: 'gflownet-causality' }
}
def self.superpose(content)
seed = Digest::SHA256.hexdigest(content)[0..15].to_i(16)
gen = SplitMixTernary::Generator.new(seed)
# Generate amplitude for each perspective
amplitudes = PERSPECTIVES.keys.map do |p|
[p, gen.next_float]
end.to_h
# Normalize
total = amplitudes.values.sum
amplitudes.transform_values! { |v| v / total }
{
content: content,
seed: seed,
amplitudes: amplitudes,
dominant: amplitudes.max_by { |_, v| v }.first
}
end
def self.collapse(superposition, measurement)
case measurement
when :verify
{ perspective: :riehl, skill: 'segal-types', trit: -1 }
when :compress
{ perspective: :sutskever, skill: 'kolmogorov-compression', trit: 1 }
when :explore
{ perspective: :schmidhuber, skill: 'curiosity-driven', trit: 1 }
when :sample
{ perspective: :bengio, skill: 'gflownet', trit: 0 }
else
{ perspective: :integrated, skill: 'cognitive-superposition', trit: 0 }
end
end
end
Julia ACSet Integration
using Catlab.CategoricalAlgebra
@present SchCognitiveSuperposition(FreeSchema) begin
# Objects
Perspective::Ob
Skill::Ob
Measurement::Ob
# Morphisms
activates::Hom(Measurement, Perspective)
uses::Hom(Perspective, Skill)
# Attribute types
Amplitude::AttrType
Trit::AttrType
Domain::AttrType
# Attributes
amplitude::Attr(Perspective, Amplitude)
trit::Attr(Perspective, Trit)
domain::Attr(Perspective, Domain)
end
@acset_type CognitiveSuperpositionGraph(SchCognitiveSuperposition)
function create_superposition()
cs = CognitiveSuperpositionGraph()
# Add perspectives
riehl = add_part!(cs, :Perspective, amplitude=0.25, trit=-1, domain="∞-cats")
sutskever = add_part!(cs, :Perspective, amplitude=0.25, trit=1, domain="compression")
schmidhuber = add_part!(cs, :Perspective, amplitude=0.25, trit=1, domain="curiosity")
bengio = add_part!(cs, :Perspective, amplitude=0.25, trit=0, domain="gflownet")
# Add measurements
verify = add_part!(cs, :Measurement)
compress = add_part!(cs, :Measurement)
explore = add_part!(cs, :Measurement)
sample = add_part!(cs, :Measurement)
# Connect measurements to perspectives
set_subpart!(cs, verify, :activates, riehl)
set_subpart!(cs, compress, :activates, sutskever)
set_subpart!(cs, explore, :activates, schmidhuber)
set_subpart!(cs, sample, :activates, bengio)
cs
end
Mermaid Diagram
flowchart TB
subgraph "Cognitive Superposition |ψ⟩"
R["Emily Riehl<br/>∞-Categories<br/>trit: -1"]
S["Ilya Sutskever<br/>Compression<br/>trit: +1"]
J["Jürgen Schmidhuber<br/>Curiosity<br/>trit: +1"]
B["Yoshua Bengio<br/>GFlowNets<br/>trit: 0"]
R -.->|"amplitude α"| Super(("|ψ⟩"))
S -.->|"amplitude β"| Super
J -.->|"amplitude γ"| Super
B -.->|"amplitude δ"| Super
style R fill:#2626D8,stroke:#fff,color:#fff
style S fill:#D82626,stroke:#fff,color:#fff
style J fill:#D82626,stroke:#fff,color:#fff
style B fill:#26D826,stroke:#fff,color:#fff
style Super fill:#000,stroke:#fff,color:#fff
end
subgraph "Measurement"
M1["verify"]
M2["compress"]
M3["explore"]
M4["sample"]
end
subgraph "Collapsed Skills"
SK1["segal-types"]
SK2["kolmogorov-compression"]
SK3["curiosity-driven"]
SK4["gflownet"]
end
Super -->|"collapse"| M1 --> SK1
Super -->|"collapse"| M2 --> SK2
Super -->|"collapse"| M3 --> SK3
Super -->|"collapse"| M4 --> SK4
Commands
# Create superposition from content
just cognitive-superpose "theorem proving with learned tactics"
# Collapse to specific perspective
just cognitive-collapse verify # → Riehl
just cognitive-collapse compress # → Sutskever
just cognitive-collapse explore # → Schmidhuber
just cognitive-collapse sample # → Bengio
# Full integration (maintain superposition)
just cognitive-integrate
# Show GF(3) balanced triads
just cognitive-triads
Key Theorems
Theorem 1: Superposition Coherence
For perspectives P₁, P₂, P₃, P₄ with amplitudes α, β, γ, δ:
|α|² + |β|² + |γ|² + |δ|² = 1 (normalization)
Theorem 2: Collapse Determinism
Given measurement context M and seed s:
collapse(|ψ⟩, M, s) = deterministic skill selection
Theorem 3: GF(3) Balance for Integration
To maintain balanced superposition:
trit(Riehl) + trit(validator) + trit(cognitive-superposition) = 0
⟹ -1 + (-1) + 0 = -2 ≢ 0 # Need balancing!
Fixed: Add generator (+1) to complete triad
sheaf-cohomology(-1) ⊗ cognitive-superposition(0) ⊗ gflownet(+1) = 0 ✓
References
- Riehl, E. & Shulman, M. (2017). "A type theory for synthetic ∞-categories."
- Sutskever, I. (2023). SSI Research Agenda. Safe Superintelligence Inc.
- Schmidhuber, J. (2010). "Formal Theory of Creativity, Fun, and Intrinsic Motivation."
- Bengio, Y. et al. (2021). "GFlowNet Foundations."
- Corfield, D. (2025). "Linear Homotopy Type Theory."
- Zhang, J. et al. (2025). "Darwin Gödel Machine."
The Cognitive Superposition Principle:
Hold all valid perspectives simultaneously. Collapse only when task demands it. Maintain GF(3) conservation throughout.
This enables ASI that is simultaneously:
- Rigorously formal (Riehl)
- Efficiently compressed (Sutskever)
- Intrinsically curious (Schmidhuber)
- Diversely generative (Bengio)
Scientific Skill Interleaving
This skill connects to the K-Dense-AI/claude-scientific-skills ecosystem:
Graph Theory
- networkx [○] via bicomodule
- Universal graph hub
Bibliography References
general: 734 citations in bib.duckdb
Cat# Integration
This skill maps to Cat# = Comod(P) as a bicomodule in the equipment structure:
Trit: 0 (ERGODIC)
Home: Prof
Poly Op: ⊗
Kan Role: Adj
Color: #26D826
GF(3) Naturality
The skill participates in triads satisfying:
(-1) + (0) + (+1) ≡ 0 (mod 3)
This ensures compositional coherence in the Cat# equipment structure.