| name | ctp-yoneda |
| description | CTP-Yoneda Skill |
| version | 1.0.0 |
CTP-Yoneda Skill
"The Yoneda lemma is arguably the most important result in category theory." — Emily Riehl
Category Theory in Programming (CTP) by NoahStoryM - Racket tutorial mapping abstract CT concepts to programming constructs with GF(3) colored awareness.
Overview
Source: NoahStoryM/ctp
Docs: docs.racket-lang.org/ctp
Local: .topos/ctp/
Chapters (GF(3) Colored)
| # | Chapter | Trit | Color | Status |
|---|---|---|---|---|
| 1 | Category | +1 | #E67F86 |
✓ Complete |
| 2 | Functor | -1 | #D06546 |
✓ Complete |
| 3 | Natural Transformation | 0 | #1316BB |
✓ Complete |
| 4 | Yoneda Lemma | +1 | #BA2645 |
Planned |
| 5 | Higher Categories | -1 | #49EE54 |
Planned |
| 6 | (Co)Limits | 0 | #11C710 |
Planned |
| 7 | Adjunctions | +1 | #76B0F0 |
Planned |
| 8 | (Co)Monads | -1 | #E59798 |
Planned |
| 9 | CCC & λ-calculus | 0 | #5333D9 |
Planned |
| 10 | Toposes | +1 | #7E90EB |
Planned |
| 11 | Kan Extensions | -1 | #1D9E7E |
Planned |
GF(3) Sum: (+1) + (-1) + (0) + (+1) + (-1) + (0) + (+1) + (-1) + (0) + (+1) + (-1) = 0 ✓ BALANCED
Core Concepts
Category (Chapter 1)
- Objects, morphisms, composition, identity
- Digraphs → Free categories
- Subcategories, product/coproduct categories
- Quotient categories, congruence relations
Functor (Chapter 2)
- Structure-preserving maps between categories
- Constant, opposite, binary functors
- Hom functors (covariant/contravariant)
- Free monoid/category functors
- Finite automata as functors (DFA, NFA, TDFA)
Natural Transformation (Chapter 3)
- Morphisms between functors
- Functor categories
- Vertical/horizontal composition
- Whiskering
Yoneda Lemma (Key Insight)
Nat(Hom(A, -), F) ≅ F(A)
Every object is completely determined by its relationships to all other objects.
Code Examples
Located in .topos/ctp/scribblings/code/:
Category Examples
Set.rkt- Category of setsRel.rkt- Category of relationsProc.rkt- Category of proceduresPair.rkt- Product categoryMatr.rkt- Matrix categoriesList.rkt- List monoid as categoryNat.rkt- Natural numbers
Functor Examples
DFA.rkt- Deterministic finite automataNFA.rkt- Nondeterministic finite automataTDFA.rkt- Typed DFASet->Rel.rkt- Set to Relation functorP_*.rkt,P^*.rkt,P_!.rkt- Powerset functorsSliF.rkt,coSliF.rkt- Slice functors
Racket Integration
# Install CTP package
cd .topos/ctp && raco pkg install
# Build documentation
raco setup --doc-index ctp
# Open docs
open doc/ctp/index.html
Connection to Music-Topos
| CTP Concept | Music-Topos Implementation |
|---|---|
| Category | ACSets schema |
| Functor | Geometric morphism |
| Natural Transformation | Schema migration |
| Yoneda | Representable presheaves |
| Limits | Pullbacks in DuckDB |
| Adjunctions | Galois connections |
| Monads | Computation contexts |
Colored Awareness Protocol
When reading CTP files, each touched file gets a deterministic color:
# Track file access with Gay.jl colors
seed = 1069
files_touched = []
def touch_file(path, index)
color = gay_color_at(seed, index)
files_touched << { path: path, color: color, trit: color[:trit] }
end
Current session colors (seed=1069):
#E67F86(+1) - info.rkt#D06546(-1) - main.rkt#1316BB(0) - ctp.scrbl#BA2645(+1) - category/main.scrbl#49EE54(-1) - functor/main.scrbl#11C710(0) - natural transformation/#76B0F0(+1) - code examples
References
- CTP Tutorial
- Qi Flow Language - Inspiration for CTP
- Category Theory in Context - Emily Riehl
- Category Theory for Computing Science - Barr & Wells
- nLab
- TheCatsters YouTube
Commands
# View CTP docs
just ctp-docs
# Run CTP examples
just ctp-examples
# Verify GF(3) coloring
just ctp-colors
Scientific Skill Interleaving
This skill connects to the K-Dense-AI/claude-scientific-skills ecosystem:
Graph Theory
- networkx [○] via bicomodule
- Universal graph hub
Bibliography References
category-theory: 139 citations in bib.duckdb
Cat# Integration
This skill maps to Cat# = Comod(P) as a bicomodule in the equipment structure:
Trit: 0 (ERGODIC)
Home: Presheaves
Poly Op: ⊗
Kan Role: Adj
Color: #26D826
GF(3) Naturality
The skill participates in triads satisfying:
(-1) + (0) + (+1) ≡ 0 (mod 3)
This ensures compositional coherence in the Cat# equipment structure.