| name | cybernetic-open-game |
| description | Cybernetic Open Game Skill |
| version | 1.0.0 |
Cybernetic Open Game Skill
Compositional game theory for off-chain/on-chain cybernetic feedback loops with GF(3) Nash equilibrium
Trit: 0 (ERGODIC - Coordinator) Color: #26D826 (Green) Status: Production Ready Created: 2025-12-30
Overview
This skill formalizes the Agent-O-Rama ↔ Worldnet ↔ STC cybernetic feedback loop as a compositional open game where:
- Off-chain intelligence (Agent-O-Rama/DuckDB) drives cognition
- On-chain settlement (Secure Ternary Coin/Aptos) provides finality
- Value-conserving bridge (Worldnet) maintains GF(3) balance
- Nash equilibrium = GF(3) conservation across all layers
┌─────────────────────────────────────────────────────────────────────────────┐
│ CYBERNETIC LOOP AS OPEN GAME │
├─────────────────────────────────────────────────────────────────────────────┤
│ │
│ FORWARD PLAY (Strategies) │
│ │
│ Intent ──────────▶ Transaction ──────────▶ Settlement │
│ X Y Z │
│ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Agent-O-Rama│───▶│ Worldnet │───▶│ STC │ │
│ │ (-1) │ │ (0) │ │ (+1) │ │
│ │ PLAY │ │ VERIFY │ │ SETTLE │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
│ ▲ │ │ │
│ │ │ │ │
│ │ BACKWARD COPLAY (Utilities) │ │
│ │ │ ▼ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ Learning │◀───│ Reward │◀───│ Finality │ │
│ │ R │ │ S │ │ T │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
│ │
│ NASH EQUILIBRIUM = GF(3) Conservation │
│ ∀ strategy s: isEquilibrium(s) ⟺ Σ(trits) ≡ 0 (mod 3) │
│ │
└─────────────────────────────────────────────────────────────────────────────┘
Architecture Layers
| Layer | Component | Trit | Role | Bandwidth | Cost |
|---|---|---|---|---|---|
| 1 | Agent-O-Rama | -1 | Cognition | High | Low |
| 2 | Worldnet | 0 | Bridge/Verification | Medium | Medium |
| 3 | STC (Aptos) | +1 | Settlement/Consensus | Low | High |
Layer 1: Agent-O-Rama (Off-Chain Intelligence)
class AgentORama:
"""
Off-chain cognition layer.
High bandwidth, low cost, local-first.
"""
trit = -1 # MINUS (Validator/Constrainer)
def __init__(self):
self.duckdb = DuckDB() # Local storage
self.patterns = PatternExtractor() # Barton surrogate
def play(self, observation) -> Intent:
"""Forward play: form intent from observation."""
patterns = self.patterns.extract(observation)
intent = self.form_intent(patterns)
return intent
def coplay(self, intent, reward) -> Learning:
"""Backward coplay: update model from reward."""
self.patterns.update(intent, reward)
return Learning(delta=self.patterns.delta)
Layer 2: Worldnet (Value-Conserving Bridge)
class Worldnet:
"""
Bridge layer with GF(3) verification.
Immune membrane: Self/Non-Self discrimination.
"""
trit = 0 # ERGODIC (Coordinator)
def play(self, intent) -> Transaction:
"""Forward play: verify and transform intent."""
if not self.verify_gf3(intent):
raise ConservationViolation("GF(3) violated")
return Transaction(intent, signature=self.sign(intent))
def coplay(self, transaction, finality) -> Reward:
"""Backward coplay: propagate finality as reward."""
return Reward(
value=finality.value,
gf3_balanced=self.verify_gf3(finality)
)
def verify_gf3(self, data) -> bool:
"""Immune check: is this self (valid) or non-self (invalid)?"""
return sum(data.trits) % 3 == 0
Layer 3: STC on Aptos (On-Chain Settlement)
class SecureTernaryCoin:
"""
On-chain settlement layer.
Low bandwidth, high cost, global consensus.
"""
trit = +1 # PLUS (Generator/Executor)
def play(self, transaction) -> Settlement:
"""Forward play: settle on Aptos mainnet."""
result = self.aptos.submit(transaction)
return Settlement(
txn_hash=result.hash,
finality=result.finality
)
def coplay(self, settlement, _) -> Observation:
"""Backward coplay: emit observation for agent."""
return Observation(
state=self.aptos.get_state(settlement.txn_hash),
timestamp=settlement.finality.timestamp
)
Open Game Formalization
Game Structure
-- Open game type
data OpenGame s t a b = Game
{ play :: s -> a -- Forward strategy
, coplay :: s -> b -> t -- Backward utility
, equilibrium :: s -> Bool -- Nash condition
}
-- The full cybernetic game
cyberneticLoop :: OpenGame Intent Settlement Observation Reward
cyberneticLoop = agentGame ; worldnetGame ; stcGame
-- Sequential composition
(;) :: OpenGame a b c d -> OpenGame c d e f -> OpenGame a b e f
g ; h = Game
{ play = play h . play g
, coplay = \s f -> coplay g s (coplay h (play g s) f)
, equilibrium = \s -> equilibrium g s && equilibrium h (play g s)
}
-- Parallel composition
(⊗) :: OpenGame a b c d -> OpenGame e f g h -> OpenGame (a,e) (b,f) (c,g) (d,h)
g ⊗ h = Game
{ play = \(s1, s2) -> (play g s1, play h s2)
, coplay = \(s1, s2) (t1, t2) -> (coplay g s1 t1, coplay h s2 t2)
, equilibrium = \(s1, s2) -> equilibrium g s1 && equilibrium h s2
}
GF(3) as Nash Equilibrium
-- Nash equilibrium iff GF(3) conserved
theorem_gf3_nash :: CyberneticLoop -> Proof
theorem_gf3_nash loop =
let trits = [trit agentGame, trit worldnetGame, trit stcGame]
-- [-1, 0, +1]
in sum trits `mod` 3 == 0 -- Nash condition
-- Compositional equilibrium preservation
theorem_compositional :: Game -> Game -> Proof
theorem_compositional g h =
equilibrium g && equilibrium h
==> equilibrium (g ; h)
Six-Dimensional Review Framework
This skill synthesizes analysis from six cognitive dimensions:
1. Graph Grafting (Structure)
# Architecture as graft complex
arch = GraftComplex(UInt64(1069))
graft!(arch, agent_o_rama, :none, String[])
graft!(arch, worldnet, :agent_o_rama, ["value_conservation"])
graft!(arch, stc, :worldnet, ["aptos_mainnet"])
verify_gf3(arch) # → (conserved=true, sum=0)
2. ACSets (Categorical Schema)
@present SchCyberneticGame(FreeSchema) begin
Agent::Ob; Bridge::Ob; Chain::Ob
Intent::Ob; Transaction::Ob; Settlement::Ob
emit::Hom(Agent, Intent)
verify::Hom(Intent, Bridge)
submit::Hom(Bridge, Transaction)
settle::Hom(Transaction, Chain)
observe::Hom(Chain, Agent) # Feedback!
Trit::AttrType
agent_trit::Attr(Agent, Trit) # -1
bridge_trit::Attr(Bridge, Trit) # 0
chain_trit::Attr(Chain, Trit) # +1
end
3. Bisimulation Game (Verification)
ROUND 1: Attacker submits invalid intent
Defender: "Rejected - GF(3) violated"
Arbiter: BLOCKED ✓
ROUND 2: Attacker attempts TOCTOU attack
Defender: "Signature invalidated by post-mod"
Arbiter: BLOCKED ✓
VERDICT: Bisimilar to secure spec (depth 3)
4. BlackHat-Go / Carlini (Security)
| Attack Vector | Risk | Mitigation |
|---|---|---|
| Intent Injection | 8/10 | Prompt validation |
| Trit Manipulation | 9/10 | Cryptographic signing |
| Replay Attack | 7/10 | Nonce + timestamp |
| TOCTOU | 8/10 | Atomic commit-sign |
| GF(3) Bypass | 10/10 | Formal verification |
5. Cybernetic Immune (Self/Non-Self)
SELF (Reafference): NON-SELF (Exafference):
• Valid GF(3) intents • Conservation violation
• Signed by known agent • Unknown signature
• Within rate limits • Anomalous patterns
WORLDNET = Immune Membrane (MHC Presentation)
6. ALife (Emergence)
METABOLISM: Value flows through layers
REPRODUCTION: Successful patterns replicate
HOMEOSTASIS: GF(3) conservation maintains stability
COOPERATION: TIT-FOR-TAT strategies emerge
Condensed Mathematics Connection
module CondensedCyberneticGame
# Each layer has a liquid parameter encoding bandwidth/cost
LAYERS = {
agent_o_rama: { trit: -1, liquid_r: 0.3 }, # High BW, local
worldnet: { trit: 0, liquid_r: 0.5 }, # Medium
stc: { trit: +1, liquid_r: 0.9 } # Low BW, global (solid)
}
# Liquid → Solid transition = Off-chain → On-chain
def self.solidify(intent, r_threshold: 0.9)
# As r → 1, we approach on-chain settlement
current_r = intent.layer.liquid_r
if current_r >= r_threshold
submit_to_aptos(intent)
else
keep_offchain(intent)
end
end
end
Mutual Awareness Framework
Open games provide semantics for skill mutual awareness:
-- Each skill is a game
skillGame :: Skill -> OpenGame Context Result Query Response
-- Mutual awareness = game composition
aware :: Skill -> Skill -> OpenGame
aware s1 s2 = skillGame s1 ; skillGame s2
-- Awareness network = parallel composition
awarenessNetwork :: [Skill] -> OpenGame
awarenessNetwork = foldr1 (⊗) . map skillGame
-- Equilibrium = mutual consistency
isAware :: [Skill] -> Bool
isAware skills = equilibrium (awarenessNetwork skills)
DuckDB Activity Aggregation
-- Skills become mutually aware via activity correlation
CREATE TABLE skill_awareness (
from_skill VARCHAR,
to_skill VARCHAR,
awareness_type VARCHAR, -- 'neighbor', 'ref', 'cooccur', 'game'
weight FLOAT,
game_equilibrium BOOLEAN, -- Nash equilibrium?
PRIMARY KEY (from_skill, to_skill, awareness_type)
);
-- Open game equilibrium check
CREATE VIEW game_equilibrium AS
SELECT
from_skill, to_skill,
SUM(trit) % 3 = 0 as nash_equilibrium
FROM skill_awareness sa
JOIN skill_trits st ON sa.from_skill = st.skill
GROUP BY from_skill, to_skill;
GF(3) Triads
# Core Architecture Triads
agent-o-rama (-1) ⊗ cybernetic-open-game (0) ⊗ stc (+1) = 0 ✓
bisimulation-game (-1) ⊗ open-games (0) ⊗ alife (+1) = 0 ✓
blackhat-go (-1) ⊗ cybernetic-open-game (0) ⊗ cooperation (+1) = 0 ✓
condensed-stacks (-1) ⊗ cybernetic-open-game (0) ⊗ emergence (+1) = 0 ✓
# Verification Triads
carlini-attack (-1) ⊗ immune-membrane (0) ⊗ homeostasis (+1) = 0 ✓
temporal-coalgebra (-1) ⊗ open-games (0) ⊗ free-monad-gen (+1) = 0 ✓
sheaf-cohomology (-1) ⊗ graph-grafting (0) ⊗ nash-equilibrium (+1) = 0 ✓
Integrated Skills
This skill synthesizes knowledge from:
| Skill | Trit | Contribution |
|---|---|---|
_integrated |
0 | ASI skill orchestration |
bisimulation-game |
-1 | Verification protocol |
acsets |
0 | Categorical schema |
cognitive-superposition |
0 | Multi-perspective analysis |
blackhat-go |
-1 | Security analysis |
cybernetic-immune |
0 | Self/Non-Self discrimination |
alife |
+1 | Emergence patterns |
condensed-analytic-stacks |
-1 | Topology/bandwidth |
graph-grafting |
0 | Compositional structure |
open-games |
0 | Game-theoretic semantics |
reflow |
0 | Information transformation |
duckdb-ies |
+1 | Activity aggregation |
Commands
# Verify GF(3) conservation
just cybernetic-verify
# Run bisimulation game
just cybernetic-bisim depth=5
# Check Nash equilibrium
just cybernetic-nash
# Analyze attack surface
just cybernetic-security
# Run immune classification
just cybernetic-immune intent.json
# Export to DuckDB
just cybernetic-export
# Visualize game network
just cybernetic-viz
References
- Ghani, Hedges, et al. "Compositional Game Theory"
- Capucci & Gavranović, "Actegories for Open Games"
- Scholze & Clausen, "Condensed Mathematics"
- Varela, "Principles of Biological Autonomy"
- Axelrod, "Evolution of Cooperation"
- Carlini, "Evaluating Adversarial Robustness"
See Also
- `open-games` - Core open game theory
- `bisimulation-game` - Verification games
- `agent-o-rama` - Cognitive surrogate
- `graph-grafting` - Compositional structure
- `cybernetic-immune` - Immune discrimination
- `duckdb-ies` - Activity aggregation
Skill Name: cybernetic-open-game Type: Architecture / Game Theory / Systems Integration Trit: 0 (ERGODIC - coordinator) GF(3): Conserved via Nash equilibrium Thread: 2025-12-30 cognitive superposition review
Scientific Skill Interleaving
This skill connects to the K-Dense-AI/claude-scientific-skills ecosystem:
Graph Theory
- networkx [○] via bicomodule
- Universal graph hub
Bibliography References
game-theory: 21 citations in bib.duckdb
Cat# Integration
This skill maps to Cat# = Comod(P) as a bicomodule in the equipment structure:
Trit: 0 (ERGODIC)
Home: Prof
Poly Op: ⊗
Kan Role: Adj
Color: #26D826
GF(3) Naturality
The skill participates in triads satisfying:
(-1) + (0) + (+1) ≡ 0 (mod 3)
This ensures compositional coherence in the Cat# equipment structure.