| name | derangement-reflow |
| description | |
| version | 1.0.0 |
Derangement Reflow: World Operators as Information Reflow
Core Insight
World operators are information reflow operators because the derangement constraint σ(i)≠i prevents information stasis. Every bit must flow to a different position—no self-loops in the information graph.
The GitHub Blind Spot
PR reviews exhibit a fixed-point pathology: validators often self-validate their own patterns. This violates the fundamental derangement constraint that enables healthy information flow:
❌ FIXED POINT (σ(i)=i): Validator A → validates → Validator A's output
✓ DERANGEMENT (σ(i)≠i): Validator A → validates → Generator B's output
Generator B → generates → for Coordinator C
Coordinator C → routes → to Validator A
GF(3) Reflow Accounting
MINUS (−1): Information leaves position (entropy source) - VALIDATORS
ERGODIC (0): Information transits (channel) - COORDINATORS
PLUS (+1): Information arrives (entropy sink) - GENERATORS
Conservation: Σ trits ≡ 0 (mod 3) under all world operators
Tropical Geometry of Interaction
Skill composition paths analyzed via min-plus semiring (R ∪ {∞}, min, +):
# Tropical distance between skills
def tropical_distance(path: list[Skill]) -> float:
"""
In tropical geometry, shortest path = minimum sum.
Path cost = Σ |trit_i - trit_{i+1}|
Optimal interleaving minimizes tropical distance while
maintaining derangement (no consecutive same-trit skills).
"""
if len(path) < 2:
return 0
cost = 0
for i in range(len(path) - 1):
# Derangement check: consecutive skills must differ
if path[i].trit == path[i+1].trit:
return float('inf') # Invalid path (fixed point)
cost += abs(path[i].trit - path[i+1].trit)
return cost
Joint World Modeling via Active Inference
The missing nuance in GitHub workflows: agents must share a joint world model, not just pass artifacts:
┌─────────────────────────────────────────────────────────────────┐
│ JOINT WORLD MODEL (Active Inference) │
├─────────────────────────────────────────────────────────────────┤
│ │
│ Each agent maintains: │
│ - μ: belief about world state │
│ - π: policy (preferred future states) │
│ - F: free energy = surprise + complexity │
│ │
│ Derangement ensures: │
│ - Agent A's μ influences Agent B's π (not A's own π) │
│ - Reflow minimizes joint free energy, not individual F │
│ │
│ WEV = ∫ min(F_joint) over world transitions │
│ = value extracted from mandatory redistribution │
│ │
└─────────────────────────────────────────────────────────────────┘
Task Interleaving Pattern
From thread analysis, the optimal pattern for GF(3) triadic task interleaving:
Step 0: Spawn MINUS/ERGODIC/PLUS sub-agents in parallel
Step 1: Each agent works on disjoint task subset
Step 2: ERGODIC collects results from MINUS and PLUS
Step 3: Derangement shuffle: MINUS validates PLUS output
PLUS generates from MINUS constraints
ERGODIC routes neither to itself
Step 4: Merge with GF(3) conservation check
Implementation
#!/usr/bin/env python3
"""Derangement reflow validator for skill triplets."""
from dataclasses import dataclass
from typing import List, Tuple
import json
@dataclass
class Skill:
name: str
trit: int # -1, 0, +1
def is_derangement(permutation: List[int]) -> bool:
"""Check if permutation has no fixed points."""
return all(p != i for i, p in enumerate(permutation))
def validate_triplet_reflow(minus: Skill, ergodic: Skill, plus: Skill) -> dict:
"""
Validate that triplet follows derangement reflow:
- MINUS (-1) must flow to PLUS (+1), not to itself
- PLUS (+1) must flow to MINUS (-1), not to itself
- ERGODIC (0) routes between, never self-loops
"""
# GF(3) conservation check
trit_sum = minus.trit + ergodic.trit + plus.trit
conserved = (trit_sum % 3) == 0
# Derangement check: information flows must cross trit boundaries
# MINUS validates → PLUS output (not MINUS)
# PLUS generates → from MINUS constraints (not PLUS)
# ERGODIC routes → between others (not self)
reflow_valid = (
minus.trit != plus.trit and # Different sources
minus.trit != ergodic.trit and
plus.trit != ergodic.trit
)
# Tropical distance for this triplet
path = [minus, ergodic, plus]
tropical_cost = sum(abs(path[i].trit - path[i+1].trit) for i in range(2))
return {
"conserved": conserved,
"derangement_valid": reflow_valid,
"tropical_cost": tropical_cost,
"wev_extractable": conserved and reflow_valid,
"triplet": [minus.name, ergodic.name, plus.name],
"trits": [minus.trit, ergodic.trit, plus.trit]
}
def main():
# Example: validate the token-rent-validator triplet from PR #33
accept_no_substitutes = Skill("accept-no-substitutes", -1)
skill_creator = Skill("skill-creator", 0)
tree_sitter = Skill("tree-sitter", +1)
result = validate_triplet_reflow(
accept_no_substitutes,
skill_creator,
tree_sitter
)
print(json.dumps(result, indent=2))
# Check if PR #33 has derangement-aware validation
code_review = Skill("code-review", -1)
narya_proofs = Skill("narya-proofs", -1)
# This is a VIOLATION: two validators (-1, -1) = fixed point potential
violation_check = {
"issue": "Two validators can self-validate each other's patterns",
"fix": "Interleave with generator or coordinator between validators",
"tropical_cost": float('inf') if code_review.trit == narya_proofs.trit else 0
}
print("\n⚠️ PR #33 Derangement Issue:")
print(json.dumps(violation_check, indent=2))
if __name__ == "__main__":
main()
GF(3) Triads with This Skill
derangement-reflow (0) ⊗ accept-no-substitutes (-1) ⊗ chromatic-walk (+1) = 0 ✓
derangement-reflow (0) ⊗ active-inference (-1) ⊗ world-hopping (+1) = 0 ✓
derangement-reflow (0) ⊗ bisimulation-game (-1) ⊗ glass-bead-game (+1) = 0 ✓
References
- Derangements on 3 elements ≅ Z/3Z (cyclic group)
- Tropical geometry: min-plus semiring for path optimization
- Active inference: Friston's free energy principle for joint world modeling
- AtomicDerangement3 in signal-mcp/src/loom_failures.rs
- perception_matrix_alpha.swift: Sattolo's algorithm for guaranteed derangement