Claude Code Plugins

Community-maintained marketplace

Feedback

dialectica

@plurigrid/asi
0
0

Dialectica Skill (ERGODIC 0)

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name dialectica
description Dialectica Skill (ERGODIC 0)
version 1.0.0

Dialectica Skill (ERGODIC 0)

Proof-as-game interpretation via Gödel's Dialectica

Trit: 0 (ERGODIC)
Color: #26D826 (Green)
Role: Coordinator/Transporter

Core Concept

Dialectica transforms proofs into games:

A ⊢ B  becomes  ∃x. ∀y. R(x, y)

Where:

  • x = Proponent's move (witness/strategy)
  • y = Opponent's challenge
  • R(x,y) = Winning condition (atomic)

The Dialectica Interpretation

For Logical Connectives

D(A ∧ B) = ∃(x,x').∀(y,y'). D(A)[x,y] ∧ D(B)[x',y']

D(A → B) = ∃f,F. ∀x,y. D(A)[x, F(x,y)] → D(B)[f(x), y]

D(∀z.A) = ∃f. ∀z,y. D(A)[f(z), y]

D(∃z.A) = ∃(z,x). ∀y. D(A)[x, y]

Key Insight: Functions as Strategies

  • f extracts witnesses from proofs
  • F back-propagates challenges
  • Composition = strategy composition

Integration with Glass Bead Game

# World hop via Dialectica
def dialectica_hop(proposition, world_state)
  # Transform proposition to game
  game = {
    proponent_moves: extract_witnesses(proposition),
    opponent_moves: extract_challenges(proposition),
    winning: atomic_condition(proposition)
  }
  
  # Play generates new world
  new_world = play_game(game, world_state)
  
  # GF(3) conservation check
  verify_gf3(world_state, new_world)
end

Attack/Defense Structure

        Proponent (∃)
            ↓ witness x
        Opponent (∀)
            ↓ challenge y
        Proponent
            ↓ response (via f, F)
           ...
        Atomic check R(x,y)

Linear Logic Decomposition

Dialectica splits into multiplicative/additive:

A ⊸ B = (A⊥ ⅋ B)    # Linear implication
A ⊗ B               # Tensor (both needed)
A & B               # With (choice)
A ⊕ B               # Plus (given)
!A                  # Of course (reusable)
?A                  # Why not (garbage)

Chu Construction

Chu(Set, ⊥) ≃ *-autonomous category
Objects: (A⁺, A⁻, ⟨-,-⟩: A⁺ × A⁻ → ⊥)

GF(3) Triads

three-match (-1) ⊗ dialectica (0) ⊗ gay-mcp (+1) = 0 ✓
proofgeneral-narya (-1) ⊗ dialectica (0) ⊗ rubato-composer (+1) = 0 ✓
clj-kondo-3color (-1) ⊗ dialectica (0) ⊗ cider-clojure (+1) = 0 ✓

Commands

# Transform proof to game
just dialectica-game "A → B"

# Play one round
just dialectica-play witness challenge

# Check linear decomposition
just dialectica-linear prop

de Paiva Categories

Dialectica produces:

  1. Dial(Set): Dialectica category over Set
  2. Morphisms: (f, F) pairs with coherence
  3. Tensor: Product of games
  4. Internal hom: Strategy space
Hom_Dial((A,X,α), (B,Y,β)) = 
  { (f,F) : A×Y → B, A×Y → X | 
    α(a, F(a,y)) ≤ β(f(a,y), y) }

References

  • Gödel, "Über eine bisher noch nicht benützte Erweiterung" (1958)
  • de Paiva, "The Dialectica Categories"
  • Shulman, "Linear Logic for Constructive Mathematics"

Scientific Skill Interleaving

This skill connects to the K-Dense-AI/claude-scientific-skills ecosystem:

Graph Theory

  • networkx [○] via bicomodule
    • Universal graph hub

Bibliography References

  • general: 734 citations in bib.duckdb

Cat# Integration

This skill maps to Cat# = Comod(P) as a bicomodule in the equipment structure:

Trit: 0 (ERGODIC)
Home: Prof
Poly Op: ⊗
Kan Role: Adj
Color: #26D826

GF(3) Naturality

The skill participates in triads satisfying:

(-1) + (0) + (+1) ≡ 0 (mod 3)

This ensures compositional coherence in the Cat# equipment structure.