| name | dialectica |
| description | Dialectica Skill (ERGODIC 0) |
| version | 1.0.0 |
Dialectica Skill (ERGODIC 0)
Proof-as-game interpretation via Gödel's Dialectica
Trit: 0 (ERGODIC)
Color: #26D826 (Green)
Role: Coordinator/Transporter
Core Concept
Dialectica transforms proofs into games:
A ⊢ B becomes ∃x. ∀y. R(x, y)
Where:
- x = Proponent's move (witness/strategy)
- y = Opponent's challenge
- R(x,y) = Winning condition (atomic)
The Dialectica Interpretation
For Logical Connectives
D(A ∧ B) = ∃(x,x').∀(y,y'). D(A)[x,y] ∧ D(B)[x',y']
D(A → B) = ∃f,F. ∀x,y. D(A)[x, F(x,y)] → D(B)[f(x), y]
D(∀z.A) = ∃f. ∀z,y. D(A)[f(z), y]
D(∃z.A) = ∃(z,x). ∀y. D(A)[x, y]
Key Insight: Functions as Strategies
- f extracts witnesses from proofs
- F back-propagates challenges
- Composition = strategy composition
Integration with Glass Bead Game
# World hop via Dialectica
def dialectica_hop(proposition, world_state)
# Transform proposition to game
game = {
proponent_moves: extract_witnesses(proposition),
opponent_moves: extract_challenges(proposition),
winning: atomic_condition(proposition)
}
# Play generates new world
new_world = play_game(game, world_state)
# GF(3) conservation check
verify_gf3(world_state, new_world)
end
Attack/Defense Structure
Proponent (∃)
↓ witness x
Opponent (∀)
↓ challenge y
Proponent
↓ response (via f, F)
...
Atomic check R(x,y)
Linear Logic Decomposition
Dialectica splits into multiplicative/additive:
A ⊸ B = (A⊥ ⅋ B) # Linear implication
A ⊗ B # Tensor (both needed)
A & B # With (choice)
A ⊕ B # Plus (given)
!A # Of course (reusable)
?A # Why not (garbage)
Chu Construction
Chu(Set, ⊥) ≃ *-autonomous category
Objects: (A⁺, A⁻, ⟨-,-⟩: A⁺ × A⁻ → ⊥)
GF(3) Triads
three-match (-1) ⊗ dialectica (0) ⊗ gay-mcp (+1) = 0 ✓
proofgeneral-narya (-1) ⊗ dialectica (0) ⊗ rubato-composer (+1) = 0 ✓
clj-kondo-3color (-1) ⊗ dialectica (0) ⊗ cider-clojure (+1) = 0 ✓
Commands
# Transform proof to game
just dialectica-game "A → B"
# Play one round
just dialectica-play witness challenge
# Check linear decomposition
just dialectica-linear prop
de Paiva Categories
Dialectica produces:
- Dial(Set): Dialectica category over Set
- Morphisms: (f, F) pairs with coherence
- Tensor: Product of games
- Internal hom: Strategy space
Hom_Dial((A,X,α), (B,Y,β)) =
{ (f,F) : A×Y → B, A×Y → X |
α(a, F(a,y)) ≤ β(f(a,y), y) }
References
- Gödel, "Über eine bisher noch nicht benützte Erweiterung" (1958)
- de Paiva, "The Dialectica Categories"
- Shulman, "Linear Logic for Constructive Mathematics"
Scientific Skill Interleaving
This skill connects to the K-Dense-AI/claude-scientific-skills ecosystem:
Graph Theory
- networkx [○] via bicomodule
- Universal graph hub
Bibliography References
general: 734 citations in bib.duckdb
Cat# Integration
This skill maps to Cat# = Comod(P) as a bicomodule in the equipment structure:
Trit: 0 (ERGODIC)
Home: Prof
Poly Op: ⊗
Kan Role: Adj
Color: #26D826
GF(3) Naturality
The skill participates in triads satisfying:
(-1) + (0) + (+1) ≡ 0 (mod 3)
This ensures compositional coherence in the Cat# equipment structure.