| name | harmonic-centrality-transport |
| description | Harmonic centrality gadgets with GF(3) conservation for topological transport of ablative case structure via abelian extensions of ℚ |
| version | 1.0.0 |
Harmonic Centrality Transport
Trit: 0 (ERGODIC - coordinator) Principle: Source ā sēmine → harmonic transport → target Frame: Abelian extensions of ℚ with GF(3) Galois action
Overview
Harmonic Centrality Transport unifies:
- Harmonic Centrality - Sheaf Laplacian eigenfunctions
- GF(3) Galois Action - Triadic symmetry on field extensions
- Ablative Transport - Source-as-identity (Latin "ā sēmine")
- Topological Transport - HoTT path transport along fibrations
Mathematical Foundation
Harmonic Centrality on Graphs
The harmonic centrality of vertex v:
c_H(v) = Σ_{u≠v} 1/d(v,u)
Sheaf-theoretic formulation: Harmonic functions are sections in ker(L_F).
function harmonic_centrality(G::Graph)
n = nv(G)
D = shortest_path_matrix(G)
centrality = zeros(n)
for v in 1:n
for u in 1:n
if u != v && D[v,u] < Inf
centrality[v] += 1.0 / D[v,u]
end
end
end
return centrality
end
GF(3) Galois Action
For abelian extensions K/ℚ, the Galois group Gal(K/ℚ) acts on primes.
GF(3) reduction: σ ∈ Gal(K/ℚ) acts on trits:
σ(-1) = -1, 0, or +1 (depending on decomposition)
σ(0) = 0 (fixed by all automorphisms)
σ(+1) = +1, 0, or -1
Artin reciprocity connects this to:
- Frobenius elements Frob_p
- L-functions L(s, χ)
- Decomposition/inertia groups
Ablative Case as Source Transport
From Latin grammar, the ablative case encodes:
- Source: "ā sēmine" (from the seed)
- Agent: "ā mātre" (by the mother)
- Separation: "ab urbe" (away from the city)
Type-theoretic formulation:
ablative : (Source : Type) → (x : Source) → (Target : Type) →
Transport(Source, Target, x)
The ablative IS the transport - source encodes the derivation.
CPT Symmetry in Color Space
From Gay.jl ablative probe:
C (Charge/Chroma): hue → hue + 180°
P (Parity): saturation → 1 - saturation
T (Time): lightness → 1 - lightness
CPT² = Identity (conservation)
Gadget Construction
1. Harmonic Centrality Gadget
struct HarmonicCentralityGadget
graph::Graph
centrality::Vector{Float64}
sheaf_laplacian::Matrix{Float64}
harmonic_sections::Vector{Vector{Float64}}
end
function build_gadget(G::Graph, stalk_dim::Int)
# Build sheaf Laplacian
L_F = sheaf_laplacian(G, stalk_dim)
# Find harmonic sections (kernel of L_F)
λ, V = eigen(L_F)
harmonic = [V[:, i] for i in 1:size(V,2) if abs(λ[i]) < 1e-10]
# Compute centrality from harmonic structure
c = harmonic_centrality(G)
return HarmonicCentralityGadget(G, c, L_F, harmonic)
end
2. GF(3) Transport Gadget
struct GF3TransportGadget
source_trit::Int # -1, 0, +1
target_trit::Int
transport_map::Function
conserved::Bool
end
function ablative_transport(source::Int, galois_action::Int)
"""
Transport along abelian extension via Galois action.
source: trit value at source
galois_action: element of Gal(K/ℚ) encoded as ±1
"""
target = mod(source * galois_action + 3, 3) - 1
return GF3TransportGadget(
source, target,
x -> mod(x * galois_action + 3, 3) - 1,
source + target ≡ 0 # Conservation check
)
end
3. Topological Transport (HoTT)
-- Narya-style bridge type for transport
def transport_bridge (A B : Type) (p : A ≃ B) (x : A) : B ≔
p.forward x
-- Ablative: source is part of the transport
def ablative_transport (Source Target : Type)
(path : Br Type Source Target)
(x : Source) : Target ≔
-- The path (bridge) carries the source structure
coerce path x
The Centrality-Transport Triangle
Harmonic Centrality
(Graphs)
/ \
/ \
/ \
Abelian Extension ── Ablative Transport
(Number Theory) (Type Theory)
GF(3) conservation at each vertex of triangle.
Abelian Extensions and Class Field Theory
Cyclotomic Extensions
The n-th cyclotomic field ℚ(ζₙ) has:
- Gal(ℚ(ζₙ)/ℚ) ≅ (ℤ/nℤ)×
- For n = 3: Gal(ℚ(ζ₃)/ℚ) ≅ ℤ/2ℤ ≅ GF(2) ⊂ GF(3)
Cubic Extensions
For cube roots K = ℚ(∛2):
- Not abelian over ℚ (Galois group S₃)
- But ℚ(∛2, ζ₃)/ℚ(ζ₃) IS abelian (Kummer)
GF(3) arises naturally from 3-torsion in class groups.
Artin Reciprocity for GF(3)
function artin_symbol(K::NumberField, p::Prime)
"""
Compute Artin symbol (p, K/ℚ) for abelian extension.
Returns element of Gal(K/ℚ) ≅ GF(3)^r for appropriate K.
"""
# Decomposition type of p in K
factors = factor(p, ring_of_integers(K))
# Frobenius class
frob = frobenius_element(factors[1])
# Map to GF(3)
return trit_from_frobenius(frob)
end
Implementation
Full Transport Pipeline
function harmonic_ablative_transport(
G::Graph,
source_vertex::Int,
target_vertex::Int,
stalk_dim::Int,
seed::UInt64
)
# 1. Build harmonic centrality gadget
hc = build_gadget(G, stalk_dim)
# 2. Compute ablative path (non-backtracking geodesic)
path = shortest_path(G, source_vertex, target_vertex)
@assert is_prime_path(path) # μ ≠ 0
# 3. Transport structure along path
source_section = hc.harmonic_sections[1][source_vertex:source_vertex+stalk_dim-1]
transported = source_section
for (i, v) in enumerate(path[2:end])
# Parallel transport via restriction maps
prev_v = path[i]
F = restriction_map(G, prev_v, v)
transported = F * transported
# GF(3) check at each step
@assert gf3_conserved(transported)
end
# 4. Return with ablative provenance
return (
value = transported,
source = source_vertex,
target = target_vertex,
path = path,
centrality_source = hc.centrality[source_vertex],
centrality_target = hc.centrality[target_vertex],
ablative_phrase = "ā vertice $(source_vertex)"
)
end
DuckDB Schema
CREATE TABLE harmonic_transport (
transport_id UUID PRIMARY KEY,
graph_id VARCHAR,
source_vertex INT,
target_vertex INT,
path INT[],
source_centrality FLOAT,
target_centrality FLOAT,
transported_section FLOAT[],
gf3_conserved BOOLEAN,
ablative_phrase VARCHAR,
created_at TIMESTAMP DEFAULT NOW()
);
CREATE TABLE abelian_extension (
extension_id UUID PRIMARY KEY,
base_field VARCHAR DEFAULT 'Q',
generator VARCHAR,
degree INT,
galois_group VARCHAR,
gf3_action INT[], -- How Gal acts on GF(3)
discriminant BIGINT
);
CREATE TABLE artin_symbols (
extension_id UUID REFERENCES abelian_extension,
prime BIGINT,
frobenius_trit INT, -- -1, 0, +1
decomposition_type VARCHAR,
PRIMARY KEY (extension_id, prime)
);
CPT Symmetry Operations
function cpt_conjugate(hex::String)
"""
Apply full CPT symmetry to color.
From Gay.jl: CPT² = Identity
"""
h, s, l = hex_to_hsl(hex)
# C: hue + 180°
h_C = mod(h + 180, 360)
# P: saturation inverted
s_P = 1.0 - s
# T: lightness inverted
l_T = 1.0 - l
return hsl_to_hex(h_C, s_P, l_T)
end
# Verify: CPT² = Identity
@assert cpt_conjugate(cpt_conjugate("#A73B35")) == "#A73B35"
Linguistic Integration (Ablative Probe)
From Gay.jl:
Latin: "colōr generātus erit ā sēmine"
(color will-have-been-generated FROM-seed)
English: "color from the seed"
(source mediated by preposition)
Key insight: Latin ablative encodes SOURCE AS IDENTITY
English requires external preposition
Para(Consapevolezza) requires ablative because awareness HAS a source as part of itself.
Commands
just harmonic-transport graph.json src tgt # Transport between vertices
just abelian-gf3 extension.json # GF(3) Galois action
just ablative-probe latin 69 # Ablative linguistic analysis
just cpt-symmetry "#A73B35" # CPT conjugation
GF(3) Triad
| Component | Trit | Role |
|---|---|---|
| sheaf-laplacian-coordination | -1 | Source (ablative) |
| harmonic-centrality-transport | 0 | Ergodic (coordinator) |
| ramanujan-expander | +1 | Target (spectral bound) |
Conservation: (-1) + (0) + (+1) = 0 ✓
Skill Name: harmonic-centrality-transport Type: Topological Transport / Number Theory / Linguistics Trit: 0 (ERGODIC) GF(3): Conserved via abelian extension structure
Non-Backtracking Geodesic Qualification
Condition: μ(n) ≠ 0 (Möbius squarefree)
This skill is qualified for non-backtracking geodesic traversal:
- Prime Path: No state revisited in skill invocation chain
- Möbius Filter: Composite paths (backtracking) cancel via μ-inversion
- GF(3) Conservation: Trit sum ≡ 0 (mod 3) across skill triplets
- Spectral Gap: Ramanujan bound λ₂ ≤ 2√(k-1) for k-regular expansion
Geodesic Invariant:
∀ path P: backtrack(P) = ∅ ⟹ μ(|P|) ≠ 0
Möbius Inversion:
f(n) = Σ_{d|n} g(d) ⟹ g(n) = Σ_{d|n} μ(n/d) f(d)