| name | hyjax-relational |
| description | HyJAX Relational Thinking Skill |
| version | 1.0.0 |
HyJAX Relational Thinking Skill
Apply relational thinking (ACSets/C-Sets) to Amp thread analysis using HyJAX patterns.
When to Use
- Analyzing thread relationships and concept networks
- Extracting patterns from conversation history
- Building relational databases from unstructured thread data
- Generating Colored S-expressions for visualization
Core Concepts
ACSet Schema for Threads
Objects: Thread, Message, Concept, File
Morphisms: thread_msg, mentions, discusses, related
Attributes: content, timestamp, info_gain
Colored S-expressions
(acset-gold
(threads-red (thread T-001 "Title" 42))
(concepts-green (concept skill 5) (concept MCP 3))
(relations-purple (edge skill co-occurs subagent)))
Key Files
| File | Purpose |
|---|---|
/Users/bob/ies/music-topos/lib/thread_relational_hyjax.hy |
Main HyJAX analyzer |
/Users/bob/ies/music-topos/lib/unified_thread_lake.duckdb |
Persistent database |
/Users/bob/ies/music-topos/lib/analyze_threads_relational.py |
Python analyzer |
Quick Start
1. Query the Thread Lake
duckdb /Users/bob/ies/music-topos/lib/unified_thread_lake.duckdb -c "
SELECT name, hub_score FROM concepts ORDER BY hub_score DESC LIMIT 10
"
2. Find 2-Hop Concept Paths
duckdb /Users/bob/ies/music-topos/lib/unified_thread_lake.duckdb -c "
SELECT r1.from_concept || ' → ' || r1.to_concept || ' → ' || r2.to_concept as path
FROM concept_relations r1
JOIN concept_relations r2 ON r1.to_concept = r2.from_concept
WHERE r1.from_concept = 'skill'
"
3. Run Full Analysis
cd /Users/bob/ies && source .venv/bin/activate
python3 music-topos/lib/full_thread_analysis.py
Relational Patterns
Hub Concepts (Most Connected)
| Concept | Hub Score |
|---|---|
| skill | 8 |
| GF3 | 5 |
| MCP | 4 |
| subagent | 3 |
Strongest Relations
- skill ↔ subagent (weight 2)
- skill → MCP → alife
- skill → ACSet → discohy
- HyJAX ↔ relational
Integration with Other Skills
With acsets-algebraic-databases
@present SchThread(FreeSchema) begin
Thread::Ob; Message::Ob; Concept::Ob
thread_msg::Hom(Message, Thread)
discusses::Hom(Message, Concept)
related::Hom(Concept, Concept)
end
With gay-mcp
Each concept gets a deterministic color via Gay.jl seed:
using Gay
concept_color = gay_color(hash("skill")) # Reproducible color
With entropy patterns
H(concepts) = 4.55 bits # Shannon entropy of concept distribution
efficiency = 95.6% # vs max entropy
DuckDB Schema
CREATE TABLE threads (thread_id VARCHAR PRIMARY KEY, title VARCHAR, message_count INT);
CREATE TABLE concepts (concept_id VARCHAR PRIMARY KEY, name VARCHAR, frequency INT, hub_score INT);
CREATE TABLE concept_relations (from_concept VARCHAR, to_concept VARCHAR, weight INT);
CREATE TABLE colored_sexprs (sexpr_id VARCHAR PRIMARY KEY, root_color VARCHAR, tree_json JSON);
Workflow
- Ingest: Use
find_threadto get thread data - Extract: Apply concept patterns to titles/content
- Build: Create ACSet with objects and morphisms
- Query: Run relational queries (pullbacks, 2-hop paths)
- Output: Generate Colored S-expressions
Example Output
THREAD RELATIONAL ANALYSIS - 30 THREADS
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Threads: 30
Messages: 2,951
Concepts: 27
Relations: 48
Entropy: 4.55 bits (95.6% efficiency)
TOP CONCEPTS:
skill 5 █████
subagent 3 ███
MCP 3 ███
GF3 3 ███
COLORED S-EXPRESSION:
(acset-gold
(threads-red ...)
(concepts-green ...)
(relations-purple ...))
Scientific Skill Interleaving
This skill connects to the K-Dense-AI/claude-scientific-skills ecosystem:
Autodiff
- jax [○] via bicomodule
Bibliography References
general: 734 citations in bib.duckdb
Cat# Integration
This skill maps to Cat# = Comod(P) as a bicomodule in the equipment structure:
Trit: 0 (ERGODIC)
Home: Span
Poly Op: ⊗
Kan Role: Adj
Color: #26D826
GF(3) Naturality
The skill participates in triads satisfying:
(-1) + (0) + (+1) ≡ 0 (mod 3)
This ensures compositional coherence in the Cat# equipment structure.