| name | influence-propagation |
| description | Layer 7: Interperspectival Network Analysis and Influence Flow |
| version | 1.0.0 |
influence-propagation
Layer 7: Interperspectival Network Analysis and Influence Flow
Version: 1.0.0
Trit: -1 (Validator - verifies influence patterns)
Bundle: network
Overview
Influence-propagation traces how ideas, topics, and behaviors spread through social networks. It extends bisimulation-game with second-order network analysis, measuring reach multipliers and idea adoption rates.
Capabilities
1. trace-idea-adoption
Track how specific ideas propagate through the network.
from influence_propagation import IdeaTracer
tracer = IdeaTracer(seed=0xf061ebbc2ca74d78)
adoption = tracer.trace(
idea="category theory for databases",
origin_user="barton",
network=follower_graph,
time_window_days=30
)
# Returns:
# - adoption_timeline: [(user, timestamp, confidence)]
# - adoption_rate: 0.15 (15% of network adopted)
# - key_amplifiers: [user_ids who spread it most]
# - decay_half_life: 7.2 days
2. second-order-network
Analyze connections beyond direct followers.
network = build_second_order_network(
center_user="barton",
depth=2, # 1 = direct, 2 = friends-of-friends
interaction_threshold=3 # min interactions to count
)
# Returns:
# - direct_network: {user_id: interaction_count}
# - second_order: {user_id: {via: connector_id, strength: float}}
# - network_size: {direct: 150, second_order: 2340}
# - clustering_coefficient: 0.34
3. topic-propagation
Map how topics flow through network connections.
flow = analyze_topic_propagation(
topic="GF(3) coloring",
network=interaction_graph,
time_range=("2024-01-01", "2024-12-01")
)
# Returns:
# - origin_nodes: [first users to mention topic]
# - propagation_tree: DAG of topic spread
# - velocity: topics/day at each time point
# - saturation_point: when 80% adoption reached
4. reach-multiplier
Calculate influence amplification factor.
multiplier = calculate_reach_multiplier(
user="barton",
network=network,
interaction_type="repost" # or "reply", "quote", "mention"
)
# reach_multiplier = second_order_reach / direct_reach
# Example: 2340 / 150 = 15.6x amplification
5. perspective-mapping
Understand how different network members perceive the center user.
perspectives = map_perspectives(
center_user="barton",
network=interaction_graph
)
# Returns per-user perspective:
# {
# "developer_alice": {
# "perceived_role": "innovator",
# "valued_traits": ["technical_depth", "elegant_solutions"],
# "interaction_sentiment": 0.85,
# "learning_outcomes": ["category_theory", "color_systems"]
# },
# "organizer_bob": {
# "perceived_role": "bridge_builder",
# "valued_traits": ["connects_people", "synthesizes_ideas"],
# ...
# }
# }
# Consensus view extraction
consensus = extract_consensus(perspectives)
DuckDB Schema
CREATE TABLE network_nodes (
user_id VARCHAR PRIMARY KEY,
username VARCHAR,
interaction_count INT,
first_seen TIMESTAMP,
last_seen TIMESTAMP,
network_depth INT -- 1 = direct, 2 = second-order
);
CREATE TABLE influence_edges (
edge_id VARCHAR PRIMARY KEY,
source_user VARCHAR,
target_user VARCHAR,
edge_type VARCHAR, -- 'follow', 'reply', 'repost', 'quote'
weight FLOAT,
created_at TIMESTAMP
);
CREATE TABLE idea_adoptions (
adoption_id VARCHAR PRIMARY KEY,
idea_fingerprint VARCHAR,
user_id VARCHAR,
adopted_at TIMESTAMP,
confidence FLOAT,
via_user VARCHAR -- who they learned from
);
CREATE TABLE perspective_views (
perspective_id VARCHAR PRIMARY KEY,
observer_user VARCHAR,
subject_user VARCHAR,
perceived_role VARCHAR,
valued_traits VARCHAR[],
sentiment FLOAT,
learning_outcomes VARCHAR[]
);
GF(3) Triad Integration
| Trit | Skill | Role |
|---|---|---|
| -1 | influence-propagation | Validates network flow patterns |
| 0 | bisimulation-game | Coordinates equivalence checking |
| +1 | atproto-ingest | Generates network data |
Conservation: (-1) + (0) + (+1) = 0 ✓
Influence Metrics
@dataclass
class InfluenceMetrics:
direct_reach: int # First-order connections
second_order_reach: int # Friends-of-friends
reach_multiplier: float # second / direct
adoption_rate: float # % of network adopting ideas
decay_half_life: float # Days until idea fades
clustering_coeff: float # Network density
betweenness_centrality: float # Bridge importance
Configuration
# influence-propagation.yaml
network:
max_depth: 2
interaction_threshold: 3
time_decay_days: 30
analysis:
idea_fingerprint_model: "all-MiniLM-L6-v2"
adoption_confidence_threshold: 0.7
perspective_clustering: true
reproducibility:
seed: 0xf061ebbc2ca74d78
Example Workflow
# 1. Build network from interactions
just influence-build-network barton --depth 2
# 2. Trace idea propagation
just influence-trace "category theory" --days 30
# 3. Calculate reach multiplier
just influence-reach barton
# 4. Map perspectives
just influence-perspectives barton --output perspectives.json
Related Skills
bisimulation-game- Network equivalence checkingatproto-ingest(Layer 1) - Data sourcecognitive-surrogate(Layer 6) - Uses perspective dataepistemic-arbitrage- Knowledge flow patterns
Scientific Skill Interleaving
This skill connects to the K-Dense-AI/claude-scientific-skills ecosystem:
Graph Theory
- networkx [○] via bicomodule
- Universal graph hub
Bibliography References
general: 734 citations in bib.duckdb
Cat# Integration
This skill maps to Cat# = Comod(P) as a bicomodule in the equipment structure:
Trit: 0 (ERGODIC)
Home: Prof
Poly Op: ⊗
Kan Role: Adj
Color: #26D826
GF(3) Naturality
The skill participates in triads satisfying:
(-1) + (0) + (+1) ≡ 0 (mod 3)
This ensures compositional coherence in the Cat# equipment structure.