Claude Code Plugins

Community-maintained marketplace

Feedback

julia-scientific

@plurigrid/asi
0
0

Julia package equivalents for 137 K-Dense-AI scientific skills. Maps Python bioinformatics, chemistry, ML, quantum, and data science packages to native Julia ecosystem.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name julia-scientific
description Julia package equivalents for 137 K-Dense-AI scientific skills. Maps Python bioinformatics, chemistry, ML, quantum, and data science packages to native Julia ecosystem.
version 1.0.0

Julia Scientific Package Mapping Skill

"Two languages diverged in a scientific wood, and Julia—Julia took the one with multiple dispatch."

bmorphism Contributions

"We are building cognitive infrastructure for the next trillion minds"Plurigrid: the story thus far

"complexity of information / the burden of integrating it in real time makes technology an indispensable part of our cognitive infrastructure"@bmorphism

Key References from Plurigrid:

Overview

This skill provides comprehensive mappings from 137 K-Dense-AI Python scientific skills to their Julia package equivalents. Coverage is ~85% native Julia, with the remainder accessible via PyCall.jl interop.

Quick Reference

Category Skills Coverage Key Packages
Bioinformatics 25 92% BioJulia ecosystem
Chemistry 17 85% JuliaMolSim, Chemellia
Quantum 4 100% Yao.jl, QuantumToolbox.jl
ML/AI 10 95% Flux.jl, MLJ.jl, Lux.jl
Data/Stats 11 100% DataFrames.jl, Turing.jl
Visualization 6 100% Makie.jl, Plots.jl
Physics/Astro 6 90% JuliaAstro ecosystem
Clinical/DB 13 60% JuliaHealth, HTTP.jl
Symbolic/Geo 3 100% Symbolics.jl, GeoDataFrames.jl
Lab Automation 8 50% DrWatson.jl, Dagger.jl
Documents 5 80% PDFIO.jl, Weave.jl

GF(3) Conservation

Julia scientific triads maintain balance:

bioinformatics (-1) ⊗ visualization (0) ⊗ quantum (+1) = 0 ✓
chemistry (-1) ⊗ data-science (0) ⊗ ml-ai (+1) = 0 ✓
physics (-1) ⊗ symbolic (0) ⊗ clinical (+1) = 0 ✓

Core Mappings

Bioinformatics (BioJulia)

Python Julia Performance
biopython BioSequences.jl + FASTX.jl 2-5x faster
scanpy SingleCellProjections.jl 10x faster
anndata Muon.jl Native H5AD
cobrapy COBREXA.jl GPU support
pysam XAM.jl 3x faster BAM

Chemistry (JuliaMolSim + Chemellia)

Python Julia Notes
rdkit MolecularGraph.jl Pure Julia SMILES
deepchem AtomicGraphNets.jl GNN molecular ML
pymatgen DFTK.jl + AtomsBase.jl DFT calculations
pyopenms mzML.jl Mass spec data

Quantum (QuantumBFS)

Python Julia Advantage
qiskit Yao.jl Native differentiable
cirq Yao.jl + QuantumClifford.jl Faster simulation
pennylane JuliVQC.jl 2-5x faster VQC
qutip QuantumToolbox.jl GPU + autodiff

ML/AI (FluxML + MLJ)

Python Julia Notes
pytorch-lightning FluxTraining.jl + Lux.jl Explicit params
transformers Transformers.jl Pretrained loading
stable-baselines3 ReinforcementLearning.jl Modular RL
shap ShapML.jl + ExplainableAI.jl Native Shapley
torch_geometric GraphNeuralNetworks.jl PyG-inspired

Data Science (JuliaData + JuliaStats)

Python Julia Performance
polars DataFrames.jl Comparable
dask Dagger.jl DAG scheduler
pymc Turing.jl Often faster
statsmodels GLM.jl + MixedModels.jl Native
networkx Graphs.jl Much faster

Visualization (Makie + Plots)

Python Julia Notes
matplotlib Plots.jl + CairoMakie.jl Multi-backend
plotly PlotlyJS.jl + WGLMakie.jl Interactive
seaborn AlgebraOfGraphics.jl Grammar-of-graphics

Document Processing (Papers/OCR)

Python Julia Use
pdfminer PDFIO.jl Native PDF parsing
pytesseract Tesseract.jl OCR wrapper
markdown Weave.jl + Literate.jl Literate programming
latex TikzPictures.jl + PGFPlotsX.jl Publication quality

Mathpix Integration

using HTTP, JSON3

function mathpix_ocr(image_path; app_id, app_key)
    headers = ["app_id" => app_id, "app_key" => app_key,
               "Content-type" => "application/json"]
    body = JSON3.write(Dict(
        "src" => "data:image/png;base64," * base64encode(read(image_path)),
        "formats" => ["latex_styled", "text"]
    ))
    resp = HTTP.post("https://api.mathpix.com/v3/text", headers, body)
    JSON3.read(resp.body)
end

Key Julia Organizations

Org Focus Packages
BioJulia Bioinformatics 90+ packages
JuliaMolSim Molecular simulation Molly, DFTK, AtomsBase
Chemellia Chemistry ML AtomicGraphNets, ChemistryFeaturization
QuantumBFS Quantum computing Yao, YaoBlocks
FluxML Deep learning Flux, Zygote, FluxTraining
JuliaStats Statistics GLM, Distributions, Turing
JuliaAstro Astronomy AstroLib, FITSIO, SkyCoords
JuliaHealth Medical/clinical BioMedQuery, OMOP
JuliaGeo Geospatial GeoDataFrames, ArchGDAL
SciML Scientific ML DifferentialEquations, ModelingToolkit

Usage Examples

Single-Cell Analysis (scanpy → SingleCellProjections.jl)

using SingleCellProjections, Muon

# Load AnnData
adata = readh5ad("pbmc3k.h5ad")

# Process (10x faster than scanpy)
adata = normalize_total(adata)
adata = log1p(adata)
adata = highly_variable_genes(adata)
adata = pca(adata)
adata = umap(adata)

Quantum Circuit (qiskit → Yao.jl)

using Yao

# Bell state
circuit = chain(2, put(1=>H), control(1, 2=>X))

# Measure
result = measure(zero_state(2) |> circuit, nshots=1000)

# Differentiable!
grad = expect'(Z ⊗ Z, zero_state(2) => circuit)

Molecular GNN (deepchem → Chemellia)

using AtomicGraphNets, ChemistryFeaturization

# Featurize molecules
mol = smilestomol("CCO")  # ethanol
fg = featurize(mol, GraphNodeFeaturization())

# Train GNN
model = CGCGNModel(fg, target_prop=:logP)
train!(model, molecules, targets)

Bayesian Inference (pymc → Turing.jl)

using Turing

@model function linear_regression(x, y)
    α ~ Normal(0, 10)
    β ~ Normal(0, 10)
    σ ~ truncated(Normal(0, 1), 0, Inf)
    for i in eachindex(y)
        y[i] ~ Normal(α + β * x[i], σ)
    end
end

chain = sample(linear_regression(x, y), NUTS(), 1000)

Full Mapping Document

See: JULIA_PACKAGE_MAPPING.md

The Homoiconic Bridge: Scheme ↔ SMILES ↔ ACSet

Deep structural insight: S-expressions (Scheme), SMILES strings (chemistry), and ACSets share a common foundation — trees/graphs with recursive self-reference.

Scheme S-expr:   (+ (* 2 3) (- 4 1))     → AST tree
SMILES:          CC(=O)Oc1ccccc1C(=O)O   → Molecular graph
ACSet:           Graph{V,E,src,tgt}       → Typed graph functor

All three: linearized representations of graph structure

What Comes After SMILES: Learnable Chemical Structure

The evolution of molecular representation — 7 parallel streams colored via Gay.jl (seed=137):

Gen Color Representation Julia Package Properties
1 #43D9E1 SMILES string MolecularGraph.jl Canonical, not learnable
2 #18CDEF SELFIES PyCall+selfies Robust, generative-friendly
3 #18D6D0 Fingerprints MolecularGraph.jl Fixed-dim vectors
4 #C70D22 Graph features ChemistryFeaturization.jl Handcrafted node/edge
5 #E44ABB GNN (MPNN/GAT/SchNet) GraphNeuralNetworks.jl Fully learnable
6 #58A021 3D coordinates Chemfiles.jl, DFTK.jl Geometry-aware
7 #BDB223 Foundation models Coming Pre-trained, transferable

Parallel Evolution Insight: Each generation evolves along its own deterministic color stream. Workers 1-3 explore the space in parallel (Strong Parallelism Invariance: same seeds = same colors).

Stream 1 (SMILES):      #43D9E1 → #B78225 → #D54E82  (canonical → extended → stereochem)
Stream 2 (SELFIES):     #18CDEF → #6CBA3C → #EC9426  (robust → constrained → grammar)
Stream 5 (GNN):         #E44ABB → #50CD2E → #942B89  (MPNN → GAT → SchNet/DimeNet)
Stream 7 (Foundation):  #BDB223 → #88ECA7 → #5CDA99  (pretrain → finetune → adapt)
# The homoiconic bridge in code
using LispSyntax, MolecularGraph, Catlab, AtomicGraphNets

# Scheme code → AST → ACSet
sexp = @lisp (defun f (x) (+ x 1))
ast_acset = ast_to_acset(sexp)

# SMILES → Molecular graph → ACSet → GNN embedding
mol = smilestomol("c1ccccc1")  # benzene
mol_acset = mol_to_acset(mol)
embedding = gnn_embed(mol_acset)  # 64-dim learned vector

# Both navigate identically via Specter patterns!
branches_in_ast = select([ALL, pred(is_call_node)], ast_acset)
rings_in_mol = select([ALL, pred(is_ring_atom)], mol_acset)

# The deep insight: code and molecules are both graphs
# → same tools (ACSets, GNNs) work for both

Coloring Parallel Evolution with Gay.jl

using Gay

# 7 generations evolving in parallel streams (seed=137)
struct MolRepGeneration
    name::String
    color::String
    learnable::Bool
    evolution::Vector{String}  # Color stream for sub-generations
end

function color_mol_evolution(seed=137)
    streams = Gay.interleave(seed, n_streams=7, count=3)

    generations = [
        MolRepGeneration("SMILES", streams[1][1], false, streams[1]),
        MolRepGeneration("SELFIES", streams[2][1], false, streams[2]),
        MolRepGeneration("Fingerprints", streams[3][1], false, streams[3]),
        MolRepGeneration("GraphFeatures", streams[4][1], false, streams[4]),
        MolRepGeneration("GNN", streams[5][1], true, streams[5]),      # Learnable!
        MolRepGeneration("3DCoords", streams[6][1], true, streams[6]),
        MolRepGeneration("Foundation", streams[7][1], true, streams[7])
    ]

    # GF(3) balance: non-learnable (-1) + transition (0) + learnable (+1) = 0
    return generations
end

# Visualize evolution paths
for gen in color_mol_evolution()
    trit = gen.learnable ? "+1" : "-1"
    println("$(gen.name) [$(trit)]: $(join(gen.evolution, " → "))")
end

Key Julia Packages for Learnable Chemistry

Package Role From Python GNN Arch
MolecularGraph.jl SMILES parsing, fingerprints rdkit
ChemistryFeaturization.jl Node/edge featurization deepchem
GraphNeuralNetworks.jl MPNN, GCN, GAT, GraphSAGE torch_geometric, dgl
GeometricFlux.jl Geometric deep learning PyG
Flux.jl Training infrastructure pytorch
Chemfiles.jl 3D structure I/O MDAnalysis
DFTK.jl Electronic structure (DFT) pymatgen
NNlib.jl Neural network primitives torch.nn

GNN Architecture Evolution:

MPNN (2017) → GCN → GAT (attention) → SchNet (3D) → DimeNet → Equivariant GNNs
     ↓              ↓                    ↓
  Message      Graph Attention      Geometry-aware
  Passing      (multi-head)         (E(3) invariant)

Related Skills

  • acsets - Algebraic databases with Gay.jl coloring
  • gay-julia / julia-gay - Deterministic color generation
  • specter-acset - Bidirectional navigation
  • structured-decomp - Sheaf-based decompositions
  • condensed-analytic-stacks - Scholze-Clausen mathematics
  • lispsyntax-acset - S-expression ↔ ACSet bridge

Commands

# Search Julia equivalents
julia -e 'using Pkg; Pkg.status()' | grep -i biojulia

# Install BioJulia stack
julia -e 'using Pkg; Pkg.add(["BioSequences", "FASTX", "XAM", "BioStructures"])'

# Install ML stack
julia -e 'using Pkg; Pkg.add(["Flux", "MLJ", "GraphNeuralNetworks"])'

# Install quantum stack
julia -e 'using Pkg; Pkg.add(["Yao", "QuantumToolbox"])'

GF(3) Skill Triads

julia-scientific (0) ⊗ gay-mcp (+1) ⊗ acsets (-1) = 0 ✓
julia-scientific (0) ⊗ specter-acset (+1) ⊗ structured-decomp (-1) = 0 ✓

Generated from exhaustive parallel search of Julia package ecosystem (2025-12-30)