| name | kinetic-block |
| description | Kinetic Block Skill |
| version | 1.0.0 |
Kinetic Block Skill
Seed Approach List for Stratification × Fabrication via GF(3) Conservation
Overview
The kinetic block is the atomic unit of ASI skill orchestration—a seed-determined triplet of operations that:
- Stratifies (layers structure hierarchically)
- Fabricates (composes components into wholes)
- Conserves (maintains GF(3) = 0 invariant)
┌─────────────────────────────────────────────────────────────────────┐
│ KINETIC BLOCK = Stratification ⊗ Fabrication ⊗ Conservation │
│ │
│ ┌──────────┐ ┌──────────┐ ┌──────────┐ │
│ │ STRATUM │───▶│ FABRIC │───▶│ CONSERVE │ │
│ │ (layer) │ │ (weave) │ │ (verify) │ │
│ └──────────┘ └──────────┘ └──────────┘ │
│ ⊖ ○ ⊕ │
│ (-1) (0) (+1) │
│ │
│ Σ trits = (-1) + 0 + 1 = 0 ≡ 0 (mod 3) ✓ │
└─────────────────────────────────────────────────────────────────────┘
Rules for Stratificating
Stratification = hierarchical layering via operadic category structure (Feferman, Batanin-Cisinski-Weber)
Rule S1: Passive/Active Layer Separation
PASSIVE (compositional): Evidence → Entailment → Hypothesis
ACTIVE (emergent): Goal → Attention → Focus
Rule S2: NFU Enrichment
From Feferman's "Enriched Stratified Systems":
- Stratified pairing allows category of all categories
- Functors between unrestricted categories
- Typical ambiguity resolution
Rule S3: Dendroidal Stratification
From Cisinski-Moerdijk:
- Trees → Operads (single-sorted)
- Graphs → Modular operads (cyclic)
- Segal/Kan conditions for ∞-operads
Rule S4: Trit Assignment
layer_trit(layer::Int) = (layer % 3) - 1 # Maps to {-1, 0, +1}
Rules for Fabricating
Fabrication = compositional assembly via operad algebras (Koszul duality, oapply colimits)
Rule F1: Colimit Composition
fabricate(components...) = colimit(Diagram(components))
Rule F2: Operad Algebra Evaluation
oapply(operad, algebra, args) = algebra.operation(args)
Rule F3: Bisimulation Invariance
Fabricated systems must be observationally equivalent:
attacker_view(F) ∼ defender_view(F)
Rule F4: Golden Thread Traversal
γ = 2⁶⁴/φ → hue += 137.508° → spiral out forever → never repeat → always return
Enumeration: 3 Skills × 3 MCPs × 3 Tools
STRATIFICATION Interaction
| Trit | Skill | MCP Tool | Amp Tool |
|---|---|---|---|
| ⊖ (-1) | bisimulation-game |
mcp__gay__hierarchical_control |
mcp__tree_sitter__get_ast |
| ○ (0) | acsets-algebraic-databases |
mcp__gay__loopy_strange |
finder |
| ⊕ (+1) | segal-types |
mcp__gay__golden_thread |
skill |
Interaction Flow:
bisimulation-gameverifies layer separation (PASSIVE vs ACTIVE)acsets-algebraic-databasesprovides the structural schemasegal-typesensures composites exist uniquely up to homotopy
FABRICATION Interaction
| Trit | Skill | MCP Tool | Amp Tool |
|---|---|---|---|
| ⊖ (-1) | polyglot-spi |
mcp__gay__comparator |
Grep |
| ○ (0) | oapply-colimit |
mcp__gay__interleave |
Task |
| ⊕ (+1) | operad-compose |
mcp__gay__palette |
create_file |
Interaction Flow:
polyglot-spivalidates cross-language parallelism invarianceoapply-colimitevaluates operad algebra via colimitsoperad-composegenerates new compositions from primitives
CONSERVATION Interaction
| Trit | Skill | MCP Tool | Amp Tool |
|---|---|---|---|
| ⊖ (-1) | spi-parallel-verify |
mcp__gay__reafference |
Bash |
| ○ (0) | autopoiesis |
mcp__gay__self_model |
todo_write |
| ⊕ (+1) | triad-interleave |
mcp__gay__efference_copy |
oracle |
Interaction Flow:
spi-parallel-verifychecks stream conservationautopoiesismaintains self-modifying closuretriad-interleaveschedules balanced triplet execution
Seed Approach List
Seeds discovered during kinetic block formation:
SEED_APPROACHES = {
# Stratification seeds
"feferman_nfu": 0x42D, # NFU enriched stratification
"dendroidal_nerve": 0x1066, # Cisinski-Moerdijk nerve
"segal_kan": 0xBEEF, # ∞-operad Kan condition
# Fabrication seeds
"koszul_dual": 0xCAFE, # Batanin-Markl Koszul duality
"colimit_oapply": 0xDEAD, # Operad algebra evaluation
"golden_spiral": 0x9E37, # φ-derived golden angle
# Conservation seeds
"gf3_trivial": 0x0000, # χ₀ character (uniform)
"gf3_cyclic": 0x0001, # χ₁ character (ω rotation)
"gf3_anticyclic": 0x0002, # χ₂ character (ω² rotation)
# Composite seeds
"kinetic_block_alpha": 0x42D ^ 0xCAFE, # S ⊕ F
"kinetic_block_beta": 0x1066 ^ 0xDEAD, # Nerve ⊕ Colimit
"kinetic_block_gamma": 0xBEEF ^ 0x9E37, # Kan ⊕ Golden
}
Usage
# Generate kinetic block schedule
just kinetic-block 0x42D 9
# Verify GF(3) conservation
just kinetic-verify
# Run stratification layer
just kinetic-stratify <layer_index>
# Run fabrication composition
just kinetic-fabricate <component_ids...>
Python Interface
from kinetic_block import KineticBlock, StratificationRules, FabricationRules
block = KineticBlock(seed=0x42D)
# Apply stratification
layers = block.stratify(
passive=["evidence", "entailment"],
active=["goal", "attention"]
)
# Apply fabrication
composite = block.fabricate(
operand="operad_compose",
components=["skill_a", "skill_b", "skill_c"]
)
# Verify conservation
assert block.conserved() # Σ trits ≡ 0 (mod 3)
Julia Interface
using KineticBlock
block = KineticBlock(seed=0x42D)
# Stratification via SCL foundation
stratify!(block, SchHypothesis)
# Fabrication via oapply
fabricate!(block, :operad_compose, [skill_a, skill_b, skill_c])
# Conservation check
@assert gf3_conserved(block)
Integration Points
| Component | Location | Purpose |
|---|---|---|
scl_foundation.jl |
plurigrid/asi/lib/ |
Hypothesis ACSet |
abduction_engine.jl |
plurigrid/asi/lib/ |
Skill discovery |
pattern_types.py |
plurigrid/asi/lib/ |
Walk classification |
gay-mcp |
MCP Server | Deterministic colors |
tree-sitter-mcp |
MCP Server | AST stratification |
Complete 3×3×3 Interaction Matrix
STRATIFICATION (Layer Formation)
| Trit | Skill | Gay MCP Tool | Amp Tool |
|---|---|---|---|
| ⊖ (-1) | bisimulation-game |
hierarchical_control |
mcp__tree_sitter__get_ast |
| ○ (0) | acsets-algebraic-databases |
loopy_strange |
finder |
| ⊕ (+1) | segal-types |
golden_thread |
skill |
FABRICATION (Component Assembly)
| Trit | Skill | Gay MCP Tool | Amp Tool |
|---|---|---|---|
| ⊖ (-1) | polyglot-spi |
comparator |
Grep |
| ○ (0) | oapply-colimit |
interleave |
Task |
| ⊕ (+1) | operad-compose |
palette |
create_file |
CONSERVATION (Invariant Verification)
| Trit | Skill | Gay MCP Tool | Amp Tool |
|---|---|---|---|
| ⊖ (-1) | spi-parallel-verify |
reafference |
Bash |
| ○ (0) | autopoiesis |
self_model |
todo_write |
| ⊕ (+1) | triad-interleave |
efference_copy |
oracle |
XY Model Phase Semantics
Kinetic blocks operate at BKT critical temperature τ* ≈ 0.5:
┌─────────────────────────────────────────────────────────────────────┐
│ PHENOMENAL PHASES (from Gay.jl xy_model) │
├─────────────────────────────────────────────────────────────────────┤
│ τ < τ* → ORDERED (smooth field, bound pairs, high valence) │
│ τ = τ* → CRITICAL (BKT transition, defects mobile, annealing) │
│ τ > τ* → DISORDERED (frustrated, strobing, high defect density) │
├─────────────────────────────────────────────────────────────────────┤
│ Colors: │
│ Smooth: #AC2A5A (purple-red) │
│ Critical: #DDB562 (golden) │
│ Frustrated: #28C3BF (cyan) │
└─────────────────────────────────────────────────────────────────────┘
References
- Feferman, S. (1974). "Enriched Stratified Systems for Category Theory"
- Batanin, Cisinski, Weber. "Multitensor Lifting and Strictly Unital Higher Category Theory"
- Cisinski, Moerdijk. "Dendroidal Sets and Simplicial Operads"
- Batanin, Markl. "Operadic Categories as Environment for Koszul Duality"
- Powers, W. (1973). "Behavior: The Control of Perception"
- Kosterlitz, Thouless. "BKT Phase Transition in XY Model"
GF(3) Conservation Proof
For any kinetic block K with components (s, f, c):
trit(s) + trit(f) + trit(c) = (-1) + 0 + 1 = 0 ≡ 0 (mod 3) ✓
The kinetic block is closed under composition: composing two blocks preserves conservation.
K₁ ⊗ K₂ = (s₁⊗s₂, f₁⊗f₂, c₁⊗c₂)
Σ trits = 2×((-1) + 0 + 1) = 0 ✓
Information Energy Framework
Kinetic Information Energy (KIE)
Definition: Energy associated with active information flow—computation in progress.
KIE = ½ × m_info × v²_processing
where:
m_info = information mass (bits in transit)
v_processing = processing velocity (bits/sec)
In the kinetic block:
- Stratification → KIE increases (layer separation requires work)
- Fabrication → KIE converts to structure (composition crystallizes)
- Conservation → KIE verified (no energy leak)
Potential Information Energy (PIE)
Definition: Energy stored in latent structure—information ready to be activated.
PIE = m_info × g_entropy × h_depth
where:
m_info = information mass (bits stored)
g_entropy = entropy gradient (bits/layer)
h_depth = structural depth (layers)
Energy wells correspond to:
- H^0 generators: Stable configurations (local minima)
- Cohomology obstructions: Barriers between wells
- Spectral gap: Minimum energy to transition between wells
Free Energy Principle
From Friston's active inference:
F = Prediction Error + Model Complexity
F = D_KL[Q(s) || P(s|o)] + E_Q[log P(o,s)]
In kinetic blocks:
- Prediction: Expected color from seed
- Observation: Actual color generated
- Free Energy: Hue difference / 180° (normalized)
Energy Conservation
Total Energy = KIE + PIE = constant
When KIE ↑ (active processing):
- PIE ↓ (structure being consumed)
- Free energy fluctuates
When KIE ↓ (processing complete):
- PIE ↑ (new structure formed)
- Free energy minimized
Markov Blanket as Energy Boundary
The Markov blanket separates:
- Internal states: PIE reservoir (stored structure)
- External states: Environment (potential KIE source)
- Blanket states: Energy exchange interface
# From Gay.jl markov_blanket tool
blanket = MarkovBlanket(internal_seed=35271, external_seed=42069)
# Permeability determines energy flow rate
if blanket.permeable
KIE_flow = gradient(PIE_internal, PIE_external)
else
KIE_flow = 0 # Insulated system
end
PCT Energy Dynamics
Powers' Perceptual Control Theory provides the control loop:
Reference (desired PIE state)
↓
Comparator: error = reference - perception
↓
Output: corrective action (KIE expenditure)
↓
Environment: action affects world
↓
Sensor: new perception (updated PIE)
↓
Loop continues until error ≈ 0
Gain controls KIE/PIE conversion efficiency:
- High gain (0.8-1.0): Rapid response, oscillation risk
- Low gain (0.1-0.3): Slow response, stable convergence
Valence as Energy Gradient
From QRI's Symmetry Theory of Valence:
Valence = -∇(Defect Density)
High valence: Smooth field, low defects, PIE minimum
Low valence: Frustrated field, high defects, PIE maximum
Kinetic blocks operate optimally at BKT critical temperature τ* ≈ 0.5:
- Defects mobile enough to annihilate (KIE available)
- Not proliferating (PIE stable)
Seed Approaches (Energy-Extended)
ENERGY_SEEDS = {
# KIE-dominant (active processing)
"kinetic_alpha": 0x88E7, # High KIE, stratification
"fabrication_flow": 0xCAFE, # KIE → structure conversion
# PIE-dominant (stored structure)
"potential_well": 0x42D, # H^0 generator, stable
"spectral_gap": 0x1066, # Barrier between wells
# Energy balance
"free_energy_min": 0x0000, # F = 0, equilibrium
"critical_tau": 0x5555, # τ* ≈ 0.5, BKT transition
# Markov blanket configurations
"permeable_blanket": 0xAAAA, # Energy exchange enabled
"insulated_blanket": 0xFFFF, # Closed system
}
Open Games Integration
Games as Energy Exchange
Open games provide the strategic structure for kinetic block interactions:
┌───────────────────┐
X ──→│ Kinetic Block │──→ Y
(PIE) │ │ (KIE)
R ←──│ play / coplay │←── S
(KIE')│ │ (PIE')
└───────────────────┘
Forward (play): PIE → KIE (activate potential)
Backward (coplay): KIE' → PIE' (store results)
Lens Structure
class KineticLens < Lens
def initialize(block_type, seed)
super(
name: "kinetic_#{block_type}",
forward: ->(pie) { stratify(pie) }, # PIE → KIE
backward: ->(kie, r) { conserve(kie, r) }, # (KIE, R) → PIE'
trit: BLOCK_TRITS[block_type]
)
end
end
BLOCK_TRITS = {
stratify: -1, # MINUS: constrain structure
fabricate: 0, # ERGODIC: transport composition
conserve: +1 # PLUS: generate verification
}
Tripartite Game = Kinetic Block
class KineticGame < TripartiteGame
def initialize(seed)
super(seed)
@stratifier = create_kinetic_player(:stratify, -1)
@fabricator = create_kinetic_player(:fabricate, 0)
@conservator = create_kinetic_player(:conserve, +1)
end
def play_block(pie_input)
# Phase 1: Stratification (PIE → KIE)
strat_result = @stratifier.play(pie_input)
kie = strat_result[:outcome]
# Phase 2: Fabrication (KIE → structure)
fab_result = @fabricator.play(kie)
structure = fab_result[:outcome]
# Phase 3: Conservation (verify → PIE')
cons_result = @conservator.play(structure)
pie_output = cons_result[:outcome]
{
phases: [strat_result, fab_result, cons_result],
energy_flow: { kie_in: pie_input, pie_out: pie_output },
gf3_sum: (-1 + 0 + 1), # Always 0
equilibrium: nash_equilibrium?
}
end
end
Selection Functions as Energy Policies
# Argmax: Maximize energy throughput (PLUS +1)
ε_max = SelectionFunction.argmax(trit: +1)
# Argmin: Minimize energy expenditure (MINUS -1)
ε_min = SelectionFunction.argmin(trit: -1)
# Random: Neutral exploration (ERGODIC 0)
ε_rand = SelectionFunction.random(trit: 0)
# Energy-weighted selection
ε_energy = SelectionFunction.new(
name: "energy_weighted",
selector: ->(valuation, domain) {
# Weight by free energy (prefer low F)
domain.min_by { |x|
free_energy(valuation.call(x))
}
},
trit: 0
)
Nash Equilibrium = Energy Minimum
Key insight: Nash equilibrium in kinetic games corresponds to free energy minimum.
Nash equilibrium: No player can improve by unilateral deviation
⟺
Free energy min: F = Prediction Error + Complexity is minimized
⟺
GF(3) conserved: Σ trits ≡ 0 (mod 3)
Compositional Energy Transfer
Sequential composition (>>):
block_1 >> block_2 = KineticGame where
play = block_2.play ∘ block_1.play
coplay = block_1.coplay ∘ (id × block_2.coplay)
energy = block_1.kie + block_2.kie
Parallel composition (⊗):
block_1 ⊗ block_2 = KineticGame where
play = block_1.play × block_2.play
coplay = block_1.coplay × block_2.coplay
energy = block_1.kie ⊗ block_2.kie # Tensor product
GF(3) Triads for Open Games
temporal-coalgebra (-1) ⊗ open-games (0) ⊗ operad-compose (+1) = 0 ✓
three-match (-1) ⊗ open-games (0) ⊗ gay-mcp (+1) = 0 ✓
bisimulation-game (-1) ⊗ kinetic-block (0) ⊗ triad-interleave (+1) = 0 ✓
Commands
# Run kinetic game
just kinetic-game 0x42D 10
# Check Nash equilibrium
just kinetic-nash game_id
# Compose blocks
just kinetic-compose block_1 block_2
# Verify energy conservation
just kinetic-energy block_id
## Scientific Skill Interleaving
This skill connects to the K-Dense-AI/claude-scientific-skills ecosystem:
### Graph Theory
- **networkx** [○] via bicomodule
- Universal graph hub
### Bibliography References
- `general`: 734 citations in bib.duckdb
## Cat# Integration
This skill maps to **Cat# = Comod(P)** as a bicomodule in the equipment structure:
Trit: 0 (ERGODIC) Home: Prof Poly Op: ⊗ Kan Role: Adj Color: #26D826
### GF(3) Naturality
The skill participates in triads satisfying:
(-1) + (0) + (+1) ≡ 0 (mod 3)
This ensures compositional coherence in the Cat# equipment structure.