| name | plr-thread-coloring |
| description | PLR (Parallel/Leading-tone/Relative) transitions for thread coloring. One-hot keyspace reduction to GF(3) trits for behavior indexing. Grows perception/action information field capacity through efficient user illusion. |
| version | 1.0.0 |
PLR Thread Coloring
The first color IS the thread. One-hot → trit → behavior.
Core Thesis
Thread identifiers (T-xxxxxxxx) are seeds. The first color derived from the seed IS the thread's identity. PLR transformations navigate the color space while preserving common tones (2/3 components stable).
Thread ID → Hash → Seed → SplitMix64 → First Color → Identity
↓
PLR Transitions → Color Path → Behavior Trace
↓
One-Hot Reduction → GF(3) → Efficient Index
One-Hot Keyspace Reduction
Problem: Exponential Keyspace
Thread ID space: 2^128 (UUID)
One-hot encoding: 128 bits
Behavior space: Intractable
Solution: Reduce to GF(3) Trits
One-hot(128 bits) → Hash(64 bits) → SplitMix64 → Hue(360°) → Trit(-1,0,+1)
Keyspace: 3 states per trit
3 PLR ops × 3 trits = 9 behavior classes
Sufficient for:
- User illusion (perceived control)
- Behavior indexing (O(1) lookup)
- Action field growth (bounded expansion)
PLR → Trit Mapping
| PLR Op | Color Δ | Trit | Behavior |
|---|---|---|---|
| P (Parallel) | Hue ±15° | 0 | ERGODIC: local exploration |
| L (Leading) | L ±10 | -1 | MINUS: constraint/validation |
| R (Relative) | C ±20, H ±30° | +1 | PLUS: expansion/generation |
GF(3) Conservation
Every PLR sequence of length 3 sums to 0 (mod 3):
P L R = 0 + (-1) + 1 = 0 ✓
R R R = 1 + 1 + 1 = 3 ≡ 0 ✓
L P R = -1 + 0 + 1 = 0 ✓
Thread ID to First Color
def thread_to_color(thread_id: str) -> dict:
"""Extract color from thread identifier."""
uuid_part = thread_id.replace("T-", "").replace("-", "")
seed = int(uuid_part[:16], 16)
_, val = splitmix64(seed)
L = 10.0 + 85.0 * ((val & 0xFFFF) / 65535.0)
C = 100.0 * (((val >> 16) & 0xFFFF) / 65535.0)
H = 360.0 * (((val >> 32) & 0xFFFF) / 65535.0)
trit = hue_to_trit(H)
return {"thread_id": thread_id, "seed": seed,
"L": L, "C": C, "H": H, "trit": trit}
PLR Operations
# P: Parallel - minimal change (hue rotation)
P(color; direction=1) = (L=color.L, C=color.C,
H=mod(color.H + 15*direction, 360), trit=0)
# L: Leading-tone - lightness change
L(color; direction=1) = (L=clamp(color.L + 10*direction, 1, 99),
C=color.C, H=color.H, trit=-1)
# R: Relative - largest shift (chroma + hue)
R(color; direction=1) = (L=color.L,
C=clamp(color.C + 20*direction, 0, 150),
H=mod(color.H + 30*direction, 360), trit=1)
9-Class Behavior System
┌─────────┬────────────┬────────────┬────────────┐
│ │ MINUS (-1) │ ERGODIC (0)│ PLUS (+1) │
├─────────┼────────────┼────────────┼────────────┤
│ P (0) │ P-MINUS │ P-ERGODIC │ P-PLUS │
│ │ validate │ explore │ expand │
├─────────┼────────────┼────────────┼────────────┤
│ L (-1) │ L-MINUS │ L-ERGODIC │ L-PLUS │
│ │ contract │ darken │ brighten │
├─────────┼────────────┼────────────┼────────────┤
│ R (+1) │ R-MINUS │ R-ERGODIC │ R-PLUS │
│ │ simplify │ modulate │ elaborate │
└─────────┴────────────┴────────────┴────────────┘
Efficiency Gain
One-hot: 2^128 possible states
GF(3): 3 possible states
Reduction: 128 bits → 1.58 bits (log₂(3))
Speedup: O(2^128) → O(1) behavior lookup
Perception/Action Field Growth
The perception/action field grows through PLR navigation:
Capacity(t) = Capacity(0) × (1 + α × PLR_diversity(t))
Where:
- PLR_diversity = entropy of PLR sequence distribution
- α = learning rate (typically 0.01-0.1)
User Illusion
The user perceives rich control over a 128-bit thread space while the system operates on a 9-class behavior index. This compression preserves the "feeling" of agency while enabling tractable computation.
Full Sexp Representation
(plr-thread-coloring
:seed 1069
:thread-to-color
(lambda (thread-id)
(let* ((seed (thread->seed thread-id))
((L C H) (seed->lch seed)))
`(:L ,L :C ,C :H ,H :trit ,(hue->trit H))))
:plr-ops
((P . (lambda (c d) `(:L ,(@ c :L) :C ,(@ c :C) :H ,(mod (+ (@ c :H) (* 15 d)) 360))))
(L . (lambda (c d) `(:L ,(clamp (+ (@ c :L) (* 10 d)) 1 99) :C ,(@ c :C) :H ,(@ c :H))))
(R . (lambda (c d) `(:L ,(@ c :L) :C ,(clamp (+ (@ c :C) (* 20 d)) 0 150)
:H ,(mod (+ (@ c :H) (* 30 d)) 360)))))
:one-hot->gf3
(lambda (one-hot-vec) (hue->trit (seed->hue (one-hot->seed one-hot-vec)))))
Implementations
See detailed implementations for:
- Python with full PLR operations
- Julia module
- DuckDB behavior index schema
- Field capacity growth algorithms
Skill Name: plr-thread-coloring
Type: Thread Identity + Behavior Indexing
Trit: 0 (ERGODIC - coordination between perception and action)
Seed: 1069 (zubuyul)
Reduction: 128-bit → 1.58-bit (one-hot → GF(3))
Behavior Classes: 9 (3 PLR × 3 trits)
Field Growth: Capacity × (1 + α × diversity)
The user illusion is sufficient when the keyspace fits in working memory.