| name | quic-channel-grading |
| description | QUIC channel quality grading with BBRv3 congestion control analysis. Classifies network paths into GF(3) tiers based on RTT, bandwidth, loss, and pacing efficiency. Integrates with Iroh P2P and world-letter cross-predictions. |
| version | 1.0.0 |
| tags | quic, networking, congestion-control, bbr, channel-grading, p2p, iroh |
| color | #00CED1 |
| hue | 181 |
| trit | 0 |
| role | ERGODIC |
QUIC Channel Grading
GF(3)-classified network path quality assessment with BBRv3 congestion control.
Overview
QUIC Channel Grading assigns quality tiers to network channels using:
- RTT measurements (round-trip time)
- Bandwidth estimation (bottleneck bandwidth)
- Loss rate (packet loss percentage)
- Pacing efficiency (burst vs smooth delivery)
- Jitter (RTT variance)
GF(3) Channel Tiers
| Tier | Trit | Quality | RTT | BW | Loss | Use Case |
|---|---|---|---|---|---|---|
| PLUS | +1 | Excellent | <20ms | >100Mbps | <0.1% | Real-time, video |
| ERGODIC | 0 | Standard | 20-100ms | 10-100Mbps | 0.1-1% | General, sync |
| MINUS | -1 | Degraded | >100ms | <10Mbps | >1% | Batch, async |
Conservation Law
Channel assignments across triads: Σ trits ≡ 0 (mod 3)
When grading 3 channels simultaneously, ensure balance:
- 1 PLUS + 1 ERGODIC + 1 MINUS = 0 (balanced)
- 3 ERGODIC = 0 (all neutral)
Architecture
┌─────────────────────────────────────────────────────────────────────┐
│ QUIC CHANNEL GRADING SYSTEM │
├─────────────────────────────────────────────────────────────────────┤
│ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ PROBE │ │ GRADE │ │ ROUTE │ │
│ │ (MINUS) │──▶│ (ERGODIC) │──▶│ (PLUS) │ │
│ │ Measure │ │ Classify │ │ Optimize │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
│ │ │ │ │
│ ▼ ▼ ▼ │
│ ┌─────────────────────────────────────────────────────────────┐ │
│ │ CHANNEL METRICS │ │
│ │ RTT: min/avg/max BW: bottleneck Loss: % │ │
│ │ Jitter: σ(RTT) Pacing: smooth? ECN: marks │ │
│ └─────────────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────────────┐ │
│ │ BBRv3 STATE MACHINE │ │
│ │ STARTUP → DRAIN → PROBE_BW → PROBE_RTT → (cycle) │ │
│ └─────────────────────────────────────────────────────────────┘ │
│ │
└─────────────────────────────────────────────────────────────────────┘
BBRv3 Congestion Control
State Machine
STARTUP ──────▶ DRAIN ──────▶ PROBE_BW ◀──────┐
│ │ │ │
│ │ ▼ │
│ │ PROBE_RTT ─────────┘
│ │ │
▼ ▼ ▼
[exponential] [reduce] [steady-state]
[growth] [queue] [oscillate]
Key Improvements (v3 over v2)
| Feature | BBRv2 | BBRv3 | Impact |
|---|---|---|---|
| Loss tolerance | 2% | 1% | Better fairness with Cubic |
| ECN support | Basic | Full | Lower latency |
| Inflight reduction | Aggressive | Gradual | Smoother |
| Startup exit | Loss-based | BW plateau | Faster |
Pacing Rate Calculation
def bbr_pacing_rate(bw_estimate: float, gain: float = 1.0) -> float:
"""
BBRv3 pacing rate = bottleneck_bandwidth * pacing_gain
Gains by state:
- STARTUP: 2.89 (fill pipe quickly)
- DRAIN: 0.35 (reduce queue)
- PROBE_BW: 1.0, 0.75, 1.25 (oscillate)
- PROBE_RTT: 1.0 (maintain)
"""
return bw_estimate * gain
def pacing_interval(packet_size: int, pacing_rate: float) -> float:
"""Time between packets in seconds."""
return packet_size / pacing_rate
Channel Grading Algorithm
Metrics Collection
from dataclasses import dataclass
from enum import IntEnum
class ChannelTrit(IntEnum):
MINUS = -1 # Degraded
ERGODIC = 0 # Standard
PLUS = 1 # Excellent
@dataclass
class ChannelMetrics:
rtt_min_ms: float # Minimum RTT (base latency)
rtt_avg_ms: float # Average RTT
rtt_max_ms: float # Maximum RTT (tail latency)
rtt_jitter_ms: float # RTT standard deviation
bandwidth_mbps: float # Estimated bottleneck bandwidth
loss_rate: float # Packet loss rate (0.0 - 1.0)
ecn_marks: int # ECN congestion marks
pacing_efficiency: float # 0.0 (bursty) to 1.0 (smooth)
def grade_channel(m: ChannelMetrics) -> ChannelTrit:
"""Assign GF(3) trit based on channel quality."""
score = 0
# RTT scoring (-1 to +1)
if m.rtt_avg_ms < 20:
score += 1
elif m.rtt_avg_ms > 100:
score -= 1
# Bandwidth scoring
if m.bandwidth_mbps > 100:
score += 1
elif m.bandwidth_mbps < 10:
score -= 1
# Loss scoring
if m.loss_rate < 0.001:
score += 1
elif m.loss_rate > 0.01:
score -= 1
# Jitter scoring
if m.rtt_jitter_ms < 5:
score += 1
elif m.rtt_jitter_ms > 50:
score -= 1
# Map to GF(3)
if score >= 2:
return ChannelTrit.PLUS
elif score <= -2:
return ChannelTrit.MINUS
else:
return ChannelTrit.ERGODIC
Hysteresis Decay
Channels exhibit hysteresis - quality changes lag behind metric changes:
def apply_hysteresis(
current_grade: ChannelTrit,
new_metrics: ChannelMetrics,
decay_rate: float = 0.1,
threshold: float = 0.5
) -> ChannelTrit:
"""
Prevent grade oscillation with exponential decay.
Only change grade if confidence exceeds threshold after decay.
"""
raw_grade = grade_channel(new_metrics)
if raw_grade == current_grade:
return current_grade
# Calculate confidence with decay
grade_diff = abs(raw_grade - current_grade)
confidence = 1.0 - math.exp(-decay_rate * grade_diff)
if confidence > threshold:
return raw_grade
else:
return current_grade
QUIC Implementation
Quinn (Rust) Integration
use quinn::{Endpoint, Connection};
use std::time::{Duration, Instant};
#[derive(Debug, Clone, Copy)]
pub enum ChannelGrade {
Plus, // +1: Excellent
Ergodic, // 0: Standard
Minus, // -1: Degraded
}
pub struct ChannelGrader {
rtt_samples: Vec<Duration>,
bandwidth_estimate: f64,
loss_count: u64,
packet_count: u64,
}
impl ChannelGrader {
pub fn record_rtt(&mut self, rtt: Duration) {
self.rtt_samples.push(rtt);
if self.rtt_samples.len() > 100 {
self.rtt_samples.remove(0);
}
}
pub fn grade(&self) -> ChannelGrade {
let avg_rtt = self.avg_rtt_ms();
let loss_rate = self.loss_rate();
let mut score = 0i32;
if avg_rtt < 20.0 { score += 1; }
else if avg_rtt > 100.0 { score -= 1; }
if self.bandwidth_estimate > 100.0 { score += 1; }
else if self.bandwidth_estimate < 10.0 { score -= 1; }
if loss_rate < 0.001 { score += 1; }
else if loss_rate > 0.01 { score -= 1; }
match score {
s if s >= 2 => ChannelGrade::Plus,
s if s <= -2 => ChannelGrade::Minus,
_ => ChannelGrade::Ergodic,
}
}
fn avg_rtt_ms(&self) -> f64 {
if self.rtt_samples.is_empty() { return 50.0; }
let sum: Duration = self.rtt_samples.iter().sum();
sum.as_secs_f64() * 1000.0 / self.rtt_samples.len() as f64
}
fn loss_rate(&self) -> f64 {
if self.packet_count == 0 { return 0.0; }
self.loss_count as f64 / self.packet_count as f64
}
}
Iroh Integration
use iroh::net::Endpoint;
pub async fn grade_iroh_connection(
endpoint: &Endpoint,
peer_id: &str
) -> anyhow::Result<ChannelGrade> {
// Probe RTT with ping
let start = Instant::now();
endpoint.ping(peer_id.parse()?).await?;
let rtt = start.elapsed();
// Get connection stats
let stats = endpoint.connection_stats(peer_id.parse()?).await?;
let mut grader = ChannelGrader::default();
grader.record_rtt(rtt);
grader.bandwidth_estimate = stats.send_rate_mbps;
grader.loss_count = stats.lost_packets;
grader.packet_count = stats.sent_packets;
Ok(grader.grade())
}
World-Letter Cross-Prediction Integration
Channel Grades Across 26 Worlds
Each world-letter can predict channel quality to other worlds:
-- DuckDB schema for world-channel predictions
CREATE TABLE WorldChannelGrades (
from_world CHAR(1),
to_world CHAR(1),
grade VARCHAR, -- 'PLUS', 'ERGODIC', 'MINUS'
trit INT,
rtt_ms DOUBLE,
bandwidth_mbps DOUBLE,
loss_rate DOUBLE,
measured_at TIMESTAMP,
PRIMARY KEY (from_world, to_world)
);
-- Cross-prediction: what does world A predict about channel to B?
INSERT INTO WorldChannelGrades VALUES
('a', 'b', 'ERGODIC', 0, 45.2, 85.0, 0.002, NOW()),
('a', 'f', 'PLUS', 1, 12.3, 250.0, 0.0001, NOW()),
('a', 'z', 'MINUS', -1, 180.5, 5.2, 0.025, NOW());
-- Verify GF(3) conservation per source world
SELECT
from_world,
SUM(trit) as trit_sum,
CASE WHEN SUM(trit) % 3 = 0 THEN 'BALANCED' ELSE 'UNBALANCED' END as status
FROM WorldChannelGrades
GROUP BY from_world;
Bisimulation Channel Comparison
Two channels are bisimilar if they produce equivalent grades:
def channels_bisimilar(
ch1: ChannelMetrics,
ch2: ChannelMetrics,
tolerance: float = 0.1
) -> bool:
"""Check if two channels are operationally equivalent."""
g1 = grade_channel(ch1)
g2 = grade_channel(ch2)
if g1 != g2:
return False
# Check metric similarity within tolerance
rtt_similar = abs(ch1.rtt_avg_ms - ch2.rtt_avg_ms) / max(ch1.rtt_avg_ms, 1) < tolerance
bw_similar = abs(ch1.bandwidth_mbps - ch2.bandwidth_mbps) / max(ch1.bandwidth_mbps, 1) < tolerance
return rtt_similar and bw_similar
Babashka Implementation
#!/usr/bin/env bb
;; quic-channel-grade.clj - Channel grading with GF(3)
(defn grade-channel [{:keys [rtt-ms bandwidth-mbps loss-rate jitter-ms]}]
(let [score (atom 0)]
;; RTT scoring
(cond (< rtt-ms 20) (swap! score inc)
(> rtt-ms 100) (swap! score dec))
;; Bandwidth scoring
(cond (> bandwidth-mbps 100) (swap! score inc)
(< bandwidth-mbps 10) (swap! score dec))
;; Loss scoring
(cond (< loss-rate 0.001) (swap! score inc)
(> loss-rate 0.01) (swap! score dec))
;; Jitter scoring
(cond (< jitter-ms 5) (swap! score inc)
(> jitter-ms 50) (swap! score dec))
;; Map to GF(3) trit
(cond (>= @score 2) {:grade :PLUS :trit 1}
(<= @score -2) {:grade :MINUS :trit -1}
:else {:grade :ERGODIC :trit 0})))
(defn hysteresis-decay [current-grade new-metrics decay-rate]
(let [raw (grade-channel new-metrics)
diff (Math/abs (- (:trit raw) (:trit current-grade)))
confidence (- 1.0 (Math/exp (- (* decay-rate diff))))]
(if (> confidence 0.5) raw current-grade)))
;; Example: grade world-to-world channels
(def channels
[{:from :a :to :b :rtt-ms 45 :bandwidth-mbps 85 :loss-rate 0.002 :jitter-ms 8}
{:from :a :to :f :rtt-ms 12 :bandwidth-mbps 250 :loss-rate 0.0001 :jitter-ms 2}
{:from :a :to :z :rtt-ms 180 :bandwidth-mbps 5 :loss-rate 0.025 :jitter-ms 60}])
(doseq [ch channels]
(let [grade (grade-channel ch)]
(println (format "%s→%s: %s (trit=%d)"
(name (:from ch)) (name (:to ch))
(name (:grade grade)) (:trit grade)))))
;; Verify GF(3) conservation
(let [trits (map #(:trit (grade-channel %)) channels)]
(println (format "\nGF(3) sum: %d (mod 3 = %d) %s"
(reduce + trits)
(mod (reduce + trits) 3)
(if (zero? (mod (reduce + trits) 3)) "✓" "✗"))))
Protocol ACSet Integration
# QUIC Channel as ACSet object
@present SchChannelACSet(FreeSchema) begin
Channel::Ob
Endpoint::Ob
Metrics::Ob
source::Hom(Channel, Endpoint)
target::Hom(Channel, Endpoint)
has_metrics::Hom(Channel, Metrics)
# Attributes
Grade::AttrType # PLUS/ERGODIC/MINUS
Trit::AttrType # -1, 0, +1
RTT::AttrType # milliseconds
Bandwidth::AttrType # Mbps
Loss::AttrType # percentage
grade::Attr(Channel, Grade)
trit::Attr(Channel, Trit)
rtt::Attr(Metrics, RTT)
bandwidth::Attr(Metrics, Bandwidth)
loss::Attr(Metrics, Loss)
end
# Morphism: Channel upgrade (MINUS → ERGODIC → PLUS)
function upgrade_channel!(acset, channel_id)
current_trit = acset[channel_id, :trit]
if current_trit < 1
acset[channel_id, :trit] = current_trit + 1
acset[channel_id, :grade] = trit_to_grade(current_trit + 1)
end
end
Commands
# Grade a channel (probe and measure)
bb quic-channel-grade.clj probe <endpoint>
# Grade all world-to-world channels
bb quic-channel-grade.clj grade-worlds
# Check GF(3) conservation
bb quic-channel-grade.clj verify
# Export grades to DuckDB
bb quic-channel-grade.clj export --db channels.duckdb
# Visualize channel lattice
bb quic-channel-grade.clj visualize
Kernel Configuration (BBRv3)
# Enable BBRv3 on Linux
sudo sysctl -w net.ipv4.tcp_congestion_control=bbr
sudo sysctl -w net.core.default_qdisc=fq
# Verify
sysctl net.ipv4.tcp_congestion_control
# Output: net.ipv4.tcp_congestion_control = bbr
# Check BBR version (v3 if kernel 6.x+)
cat /proc/sys/net/ipv4/tcp_available_congestion_control
Visualization
═══════════════════════════════════════════════════════════════════
CHANNEL QUALITY LATTICE
═══════════════════════════════════════════════════════════════════
PLUS (+1) ████████████████████████████████ a→f (12ms, 250Mbps)
████████████████████████████ b→c (18ms, 150Mbps)
ERGODIC (0) ██████████████████████████ a→b (45ms, 85Mbps)
█████████████████████████ d→e (52ms, 75Mbps)
████████████████████ f→g (68ms, 45Mbps)
MINUS (-1) ██████████████ a→z (180ms, 5Mbps)
████████████ o→p (220ms, 3Mbps)
═══════════════════════════════════════════════════════════════════
Conservation: Σ trits = 0 (mod 3) ✓
═══════════════════════════════════════════════════════════════════
Related Skills
iroh-p2p- QUIC-based P2P networking with Irohprotocol-acset- Compositional protocol designaptos-society- World-letter cross-predictionsbisimulation-game- Channel equivalence testinglocalsend-analysis- Local network discovery
References
- RFC 9000: QUIC Transport Protocol
- BBRv3 Paper: TUM Munich 2025
- QUIC Pacing Strategies (arXiv 2025)
- Iroh Documentation
Scientific Skill Interleaving
This skill connects to the K-Dense-AI/claude-scientific-skills ecosystem:
Network Theory
- networkx via bicomodule for graph analysis
- scipy for statistical RTT analysis
Bibliography References
networking: BBR, QUIC, congestion control citations
Cat# Integration
This skill maps to Cat# = Comod(P) as a bicomodule:
Trit: 0 (ERGODIC)
Home: Prof
Poly Op: ⊗ (parallel channel composition)
Kan Role: Adj (channel adaptation)
Color: #00CED1
GF(3) Naturality
The skill participates in triads satisfying:
(-1) + (0) + (+1) ≡ 0 (mod 3)
Channel grades compose: PLUS ⊗ ERGODIC ⊗ MINUS = balanced network