| name | say-ducklake-xor |
| description | Parallel thread/DuckLake discovery with XOR uniqueness from gay_seed. Finds "say" or MCP usage, cross-refs with all DuckDB sources, launches bounded parallel ops. |
| version | 1.0.0 |
Say-DuckLake XOR Discovery
Maximally parallel discovery with deterministic uniqueness guarantees.
Core Invariants
∀ i,j ∈ [0, bound): i ≠ j ⟹ seed ⊕ i ≠ seed ⊕ j (XOR uniqueness)
∀ parallel ops: same gay_seed ⟹ same colors (SPI guarantee)
Σ(trits) ≡ 0 (mod 3) (GF(3) conservation)
Usage
# Find all "say" usage in threads, cross-ref with DuckLakes
python scripts/say_ducklake_xor.py
# With explicit seed and parallelism bound
python scripts/say_ducklake_xor.py --seed 1069 --bound 27
# XOR verification mode
python scripts/say_ducklake_xor.py --verify-xor
Architecture
┌─────────────────────────────────────────────────────────────┐
│ gay_seed (root) │
├─────────────────────────────────────────────────────────────┤
│ XOR Fan-Out (bounded) │
│ ┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐ │
│ │seed⊕0 │ │seed⊕1 │ │seed⊕2 │ ... │seed⊕n-1 │ │
│ │(thread) │ │(duck_0) │ │(duck_1) │ │(duck_n) │ │
│ └────┬────┘ └────┬────┘ └────┬────┘ └────┬────┘ │
│ │ │ │ │ │
│ ▼ ▼ ▼ ▼ │
│ ┌─────────────────────────────────────────────────────┐ │
│ │ Parallel Executor (async) │ │
│ │ - Thread search: find_thread("say" OR "say mcp") │ │
│ │ - DuckDB scan: SHOW TABLES for each .duckdb │ │
│ │ - Cross-reference: match concepts/timestamps │ │
│ └─────────────────────────────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌─────────────────────────────────────────────────────┐ │
│ │ GF(3) Conservation Check │ │
│ │ Σ(trits) mod 3 = 0 ⟹ valid parallel merge │ │
│ └─────────────────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────┘
XOR Uniqueness Proof
For bound n parallel operations from seed:
def xor_unique(seed: int, bound: int) -> bool:
"""XOR with distinct indices yields distinct seeds."""
seen = set()
for i in range(bound):
derived = seed ^ i
if derived in seen:
return False # Collision!
seen.add(derived)
return True
# Always true for i,j < 2^64 and i ≠ j:
# seed ⊕ i = seed ⊕ j ⟹ i = j (XOR cancellation)
DuckLake Sources
Auto-discovered from ~/ies/**/*.duckdb:
| Source | Purpose | Trit |
|---|---|---|
pigeons_spi.duckdb |
Derivation chains, GF(3) invariants | 0 |
unified_thread_lake.duckdb |
Amp thread archive | +1 |
ananas.duckdb |
Book/paper downloads | -1 |
hatchery.duckdb |
Scheme eggs metadata | 0 |
bib.duckdb |
Bibliography entries | +1 |
Thread Patterns
Searches for threads containing:
say- macOS TTS usagesay mcp- MCP tool with speechsay-narration- Skill usagesay -v- Voice specification
Integration with PigeonsGayBridge
using .PigeonsGayBridge
# XOR fan-out with SPI guarantee
seeds = [GAY_SEED ⊻ UInt64(i) for i in 0:26]
chains = [unworld_chain(s, 10) for s in seeds]
# All chains have deterministic colors
# Cross-machine reproducibility via SPI
Cross-Reference Schema
CREATE TABLE say_ducklake_xor (
xor_index INTEGER PRIMARY KEY,
seed UBIGINT NOT NULL,
source_type VARCHAR(10), -- 'thread' or 'duckdb'
source_id VARCHAR(64),
trit TINYINT,
hex VARCHAR(7),
matched_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
UNIQUE(seed) -- XOR guarantees uniqueness
);
Bounded Parallelism
import asyncio
from concurrent.futures import ThreadPoolExecutor
async def parallel_xor_discovery(seed: int, bound: int):
"""Launch bounded parallel ops with XOR uniqueness."""
loop = asyncio.get_event_loop()
with ThreadPoolExecutor(max_workers=min(bound, 8)) as executor:
futures = [
loop.run_in_executor(executor, discover_one, seed ^ i, i)
for i in range(bound)
]
results = await asyncio.gather(*futures)
# Verify GF(3) conservation
trits = [r['trit'] for r in results]
assert sum(trits) % 3 == 0, "GF(3) drift detected"
return results
References
- PigeonsGayBridge.jl - SPI via unworld dynamics
- ducklake_discover.py - Discovery patterns
- SUBOBJECT_CLASSIFIER_RECURRENCES.md - Recurrence types
Scientific Skill Interleaving
This skill connects to the K-Dense-AI/claude-scientific-skills ecosystem:
Graph Theory
- networkx [○] via bicomodule
- Universal graph hub
Bibliography References
general: 734 citations in bib.duckdb
Cat# Integration
This skill maps to Cat# = Comod(P) as a bicomodule in the equipment structure:
Trit: 0 (ERGODIC)
Home: Prof
Poly Op: ⊗
Kan Role: Adj
Color: #26D826
GF(3) Naturality
The skill participates in triads satisfying:
(-1) + (0) + (+1) ≡ 0 (mod 3)
This ensures compositional coherence in the Cat# equipment structure.