| name | specter-acset |
| description | Specter-style bidirectional navigation for Julia Collections, S-expressions, and ACSets with inline caching |
| license | MIT |
| metadata | [object Object] |
specter-acset
Inline-cached bidirectional navigation for Julia data structures
bmorphism Contributions
"all is bidirectional" — @bmorphism, Plurigrid Play/Coplay gist
"The purpose of the Coplay section is to evaluate the impact of the work done according to our preferences about how the world needs to be versus how it actually turned out. Focus on a bidirectional view of feedback." — all is bidirectional
Version: 1.0.0 Trit: 0 (Ergodic - coordinates navigation)
From Clojure Specter to Julia
Nathan Marz's Specter library for Clojure provides bidirectional data navigation where the same path expression works for both selection AND transformation. This skill ports those patterns to Julia with extensions for S-expressions and ACSets.
Key Insights from Specter Talks
"Rama on Clojure's Terms" (2024)
"comp-navs is fast because it's just object allocation + field sets"
Specter's performance comes from:
- Inline caching: Paths compiled once, reused at callsite
- Continuation-passing style: Chains of next_fn calls
- Navigator protocol: Uniform interface for all data types
"Specter: Powerful and Simple Data Structure Manipulation"
"Without Specter, you need different code for selection vs transformation"
The bidirectionality principle: A path is a lens that focuses on parts of a structure.
Navigator Protocol
abstract type Navigator end
# Core operations - bidirectional by design
function nav_select(nav::Navigator, structure, next_fn)
# Traverse and collect
end
function nav_transform(nav::Navigator, structure, next_fn)
# Traverse and modify
end
Primitive Navigators
| Navigator | Select Behavior | Transform Behavior |
|---|---|---|
ALL |
Each element | Map over all |
FIRST |
First element | Update first only |
LAST |
Last element | Update last only |
keypath(k) |
Value at key | Update value at key |
pred(f) |
Stay if f(x) true | Transform if f(x) true |
Composition: comp_navs (The Key to Performance)
Nathan Marz's critical insight: composition is just allocation + field sets.
Why This Matters
Traditional approaches compile/interpret paths at composition time. Specter does zero work at composition - it just creates an object:
# Specter's key to performance: ONLY allocation + field sets
struct ComposedNav <: Navigator
navs::Vector{Navigator} # Just a field - no processing
end
# comp_navs does ONE thing: allocate and set field
comp_navs(navs::Navigator...) = ComposedNav(collect(navs))
# That's it. No compilation. No interpretation. No optimization.
# Just: new ComposedNav() + set navs field
The Magic: Work Happens at Traversal
All the actual work happens when you call select or transform:
# Chain of continuations - CPS (continuation-passing style)
function nav_select(cn::ComposedNav, structure, next_fn)
function chain_select(navs, struct_val)
if isempty(navs)
next_fn(struct_val) # Base case: call continuation
else
# Recursive case: process first nav, chain the rest
nav_select(first(navs), struct_val,
s -> chain_select(navs[2:end], s))
end
end
chain_select(cn.navs, structure)
end
Why CPS + Lazy Composition = Fast
Traditional:
compose(a, b, c) → [compile a+b+c] → CompiledPath
Specter:
comp_navs(a, b, c) → ComposedNav{[a, b, c]} # Just store refs
select(path, data) → [chain continuations] → results
Benefits:
- O(1) composition - just allocate, no work
- Inline caching - same ComposedNav reused at callsite
- Late binding - dynamic navs resolved at traversal time
- No intermediate allocations - CPS avoids building result lists
Inline Caching Pattern
# At each callsite, the path is compiled ONCE and cached:
@compiled_select([ALL, pred(iseven)], data)
# Expands to something like:
let cached_nav = nothing
if cached_nav === nothing
cached_nav = comp_navs(ALL, pred(iseven)) # First call only
end
nav_select(cached_nav, data, identity) # Reuse forever
end
This is why Specter achieves near-hand-written performance despite the abstraction.
S-expression Navigators
Unique to Julia - navigate typed AST nodes:
# Type definitions
abstract type Sexp end
struct Atom <: Sexp
value::String
end
struct SList <: Sexp
children::Vector{Sexp}
end
# Navigators
SEXP_HEAD # → first(children)
SEXP_TAIL # → children[2:end]
SEXP_CHILDREN # → children vector
SEXP_WALK # Recursive prewalk
sexp_nth(n) # → children[n]
ATOM_VALUE # → atom.value
Example: AST Transformation
sexp = parse_sexp("(define (square x) (* x x))")
# Rename function
renamed = transform(
[sexp_nth(2), sexp_nth(1), ATOM_VALUE],
_ -> "cube",
sexp
)
# → (define (cube x) (* x x))
ACSet Navigators
Navigate category-theoretic databases:
# Navigate morphism values
acset_field(:E, :src)
# Filter parts by predicate
acset_where(:E, :src, ==(1))
# All parts of an object
acset_parts(:V)
Example: Graph Transformation
g = @acset Graph begin V=4; E=3; src=[1,2,3]; tgt=[2,3,4] end
# Select: get all source vertices
select([acset_field(:E, :src)], g) # → [1, 2, 3]
# Transform: shift targets
g2 = transform([acset_field(:E, :tgt)], t -> mod1(t+1, 4), g)
Dynamic Navigators
selected(subpath)
Stay at current position if subpath matches:
# Select values > 5
select([ALL, selected(pred(x -> x > 5))], [1,2,3,4,5,6,7,8,9,10])
# → [6, 7, 8, 9, 10]
if_path(cond, then, else)
Conditional navigation:
if_path(pred(iseven),
keypath(:even_branch),
keypath(:odd_branch))
Coercion (Like Specter's coerce-nav)
coerce_nav(x::Navigator) = x
coerce_nav(s::Symbol) = keypath(s)
coerce_nav(f::Function) = pred(f)
coerce_nav(v::Vector) = comp_navs(coerce_nav.(v)...)
API
# High-level interface
select(path, data) # Collect matches
select_one(path, data) # Single match or nothing
transform(path, fn, data) # Transform matches
setval(path, value, data) # Set matches to value
Comparison: Clojure vs Julia
| Clojure (Specter) | Julia (SpecterACSet) | Notes |
|---|---|---|
(select [ALL even?] data) |
select([ALL, pred(iseven)], data) |
Same pattern |
(transform [ALL even?] f data) |
transform([ALL, pred(iseven)], f, data) |
Bidirectional |
| Keywords implicit | keypath(:k) explicit |
Type safety |
| No ACSet support | acset_field, acset_where |
Category theory |
| No typed sexp | Atom/SList discrimination |
AST navigation |
GF(3) Triads
three-match (-1) ⊗ specter-acset (0) ⊗ gay-mcp (+1) = 0 ✓
lispsyntax-acset (-1) ⊗ specter-acset (0) ⊗ cider-clojure (+1) = 0 ✓
Files
- Implementation:
lib/specter_acset.jl - Babashka comparison:
lib/specter_comparison.bb
Julia Scientific Package Integration
From julia-scientific skill - related Julia packages:
| Package | Category | Specter Integration |
|---|---|---|
| Catlab.jl | ACSets | Primary navigation target |
| DataFrames.jl | Data | Tabular navigation |
| Graphs.jl | Networks | Graph traversal |
| BioSequences.jl | Bioinformatics | Sequence navigation |
| MolecularGraph.jl | Chemistry | Molecular graph traversal |
| StructuredDecompositions.jl | Sheaves | Decomposition navigation |
| AlgebraicRewriting.jl | Rewriting | Rule application paths |
Cross-Domain Navigation Patterns
# Navigate DataFrame (polars → DataFrames.jl)
using DataFrames
df = DataFrame(a=[1,2,3], b=[4,5,6])
select([keypath(:a), ALL], df) # All values in column :a
# Navigate molecular graph (rdkit → MolecularGraph.jl)
using MolecularGraph
mol = smilestomol("CCO")
select([atoms, pred(a -> a.symbol == :O)], mol)
# Navigate protein structure (biopython → BioStructures.jl)
using BioStructures
pdb = read("1CRN.pdb", PDB)
select([chains, residues, pred(is_hydrophobic)], pdb)
# Navigate genomic features (pysam → XAM.jl)
using XAM
bam = BAM.Reader("aligned.bam")
select([records, pred(r -> r.mapq > 30)], bam)
References
- Specter GitHub
- Nathan Marz: "Rama on Clojure's Terms" (2024)
- Nathan Marz: "Specter: Powerful and Simple Data Structure Manipulation"
- Lens laws (Haskell perspective)
See Also
julia-scientific- Full Julia package mapping (137 skills)
Scientific Skill Interleaving
This skill connects to the K-Dense-AI/claude-scientific-skills ecosystem:
Annotated Data
- anndata [○] via bicomodule
- Hub for annotated matrices
Bibliography References
general: 734 citations in bib.duckdb
Cat# Integration
This skill maps to Cat# = Comod(P) as a bicomodule in the equipment structure:
Trit: 0 (ERGODIC)
Home: Prof
Poly Op: ⊗
Kan Role: Adj
Color: #26D826
GF(3) Naturality
The skill participates in triads satisfying:
(-1) + (0) + (+1) ≡ 0 (mod 3)
This ensures compositional coherence in the Cat# equipment structure.