Claude Code Plugins

Community-maintained marketplace

Feedback

tidar-thread-probe

@plurigrid/asi
0
0

TIDAR Thread Probe Skill

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name tidar-thread-probe
description TIDAR Thread Probe Skill
version 1.0.0

TIDAR Thread Probe Skill

Tree-structured Iterative Decomposition And Recombination for cross-system thread pattern discovery across AMP, Claude, Codex, and Warp.

Capability

Analyzes threads across multiple AI agent interaction surfaces using ordered locale site semantics:

  1. Shared Patterns: Fields/behaviors present in ALL systems
  2. Pairwise Patterns: Fields shared by exactly 2 systems
  3. Unique Patterns: System-specific fields and behaviors
  4. Perplexing Patterns: Anomalies, contradictions, mysteries

Ordered Locale vs Ordered Locale Sites

  • Ordered Locale: Complete Heyting algebra (frame) L with compatible preorder ≤ satisfying open cone condition. Each thread lives in an ordered locale (its workspace/project).

  • Ordered Locale Site: Grothendieck site on ordered locale with coverage relation J. Cross-system observation uses ordered locale sites where sheaves model behavioral coalgebra.

Thread Counts (as of 2025-12-26)

Source Threads Sessions Messages
AMP 616 - 2,535 tool calls
Claude - 236 36,057 messages
Codex - 36+ ~400 records
Total 888 canonical threads

Canonical Universal Schema

ATOMIC FIELDS (required):
  thread_id   : string  - unique session/thread identifier
  timestamp   : int64   - Unix ms (or ISO-8601 converted)
  workspace   : string  - absolute path to project/cwd
  role        : enum    - user|assistant|system|tool
  content     : string  - message text content

OPTIONAL ATOMIC:
  model       : string  - model identifier
  originator  : string  - source tool (amp, claude, codex)

DERIVED FIELDS:
  message_count    : COUNT(messages in thread)
  tool_call_count  : COUNT(tool invocations)
  acceptance_rate  : 1 - (reverted / total)
  trit             : GF(3) from hash(thread_id) mod 3 - 1
  role_semantic    : trit → {validator, coordinator, generator}

GF(3) Conservation Status

Current cross-system trit distribution:

  • MINUS (-1): 284 threads
  • ERGODIC (0): 288 threads
  • PLUS (+1): 316 threads
  • Σ trits = 32 (mod 3 = 2) → NOT CONSERVED

Need 1 more MINUS thread or 2 more ERGODIC threads to balance.

Usage

# Run TIDAR analysis
python3 src/universal_thread_schema.py

# Query specific source
duckdb trit_stream.duckdb -c "SELECT * FROM amp_threads LIMIT 10"
jq -s '.' ~/.claude/history.jsonl | head

Perplexing Patterns

  1. AMP .org files have 45% revert rate vs 0% for .clj/.jl/.bb
  2. AMP threads with 40+ hour durations but only 5-9 tool calls
  3. Codex uses danger-full-access sandbox policy in production
  4. Claude longest session: 841 messages in 182 seconds (4.6 msg/sec)
  5. AMP bimodal acceptance: threads cluster at 0% or 100%
  6. Codex embeds ~50KB instructions per session (redundant)
  7. Claude pastedContents used in only 0.5% of entries

Source-Specific Mappings

AMP → Canonical

  • thread_id → thread_id
  • first_ts/last_ts → timestamp range
  • uri → workspace (extracted)
  • tool_id → tool invocation
  • reverted → acceptance tracking

Claude → Canonical

  • sessionId → thread_id
  • timestamp → timestamp (already Unix ms)
  • project → workspace
  • display → content

Codex → Canonical

  • payload.id → thread_id
  • timestamp → timestamp (ISO-8601 → Unix ms)
  • cwd → workspace
  • message/content → content

Integration with Gay-MCP Colors

Each thread's trit determines its Gay-MCP hue:

  • MINUS (-1): Cold hues (180-300°) - Blue/Violet spectrum
  • ERGODIC (0): Neutral hues (60-180°) - Green/Cyan spectrum
  • PLUS (+1): Warm hues (0-60°, 300-360°) - Red/Yellow spectrum

Visualization: scripts/gay_stream.py --threads

Dependencies

  • duckdb for AMP queries
  • jq for Claude JSONL parsing
  • Python 3.10+ with dataclasses