| name | type-inference-validation |
| description | Static type inference and validation for navigation paths |
| source | Type theory, gradual typing, structure refinement |
| license | MIT |
| trit | -1 |
| gf3_triad | type-inference-validation (-1) ⊗ tuple-nav-composition (0) ⊗ constraint-generalization (+1) |
| status | Production Ready |
Type Inference Validation
Core Concept
Static type validation that rejects invalid path compositions before caching. Every Navigator path must prove type compatibility with its input structure—this skill enforces that proof.
Works alongside Möbius filtering as a second line of defense: Möbius eliminates topological impossibilities, Type Inference eliminates structural impossibilities.
Why Type Validation?
Consider this dangerous scenario:
data_numbers = [1, 2, 3, 4, 5]
data_dict = Dict("x" => 10, "y" => 20)
# This path makes sense for numbers
nav1 = @late_nav([ALL, pred(iseven)]) # Type ✓: Vector → Numbers → Numbers
# But what if someone mistakenly uses it on the dict?
nav_select(nav1, data_dict, x -> [x])
# => IndexError! (dicts don't support ALL enumeration this way)
Type Inference Validation prevents this at compile time, not runtime.
Architecture
Type System
Each Navigator carries a type signature:
Navigator{InputType, OutputType, PathSteps}
Examples:
nav_vector = Navigator{Vector, Vector, [ALL, pred(f)]}
nav_dict = Navigator{Dict, Vector, [keypath(k), ALL]}
nav_sexp = Navigator{SExpression, Symbol, [sexp_nth(2), SEXP_HEAD]}
Type Refinement Pipeline
Input Type
↓
@late_nav(path_expr) triggers validation
↓
Type each step in path:
[ALL] : Vector{T} → T
[keypath(k)] : Dict{K,V} → V
[pred(f)] : T → T (preserves type)
[INDEX(i)] : Vector{T} → T
[SEXP_HEAD] : SExpr → Symbol
↓
Unify step outputs with next step inputs
↓
Final output type computed
↓
Cache with type signature
↓
Accept or Reject
Type Incompatibility Detection
| Step | Input Type | Output Type | Valid? |
|---|---|---|---|
[ALL] |
Vector{T} | T | ✓ |
[ALL] |
Dict{K,V} | ⚠️ (ambiguous) | ✗ |
[keypath(k)] |
Dict{K,V} | V | ✓ |
[keypath(k)] |
Vector{T} | ✗ | ✗ |
[pred(f)] |
T | T | ✓ |
[INDEX(i)] |
Vector{T} | T | ✓ |
[INDEX(i)] |
Dict | ✗ | ✗ |
API
Type Inference
infer_type(path_expr, input_type) :: Result{OutputType, Error}
Computes the output type of a path given an input type.
infer_type([ALL, pred(iseven)], Vector{Int})
# => Result(Int) # outputs Int values
infer_type([keypath("x"), ALL], Dict{String, Vector{Int}})
# => Result(Int) # navigates to x, then enumerates integers
infer_type([keypath("x")], Vector{Int})
# => Result(TypeError("Cannot apply keypath to Vector"))
validate_path(navigator::Navigator, input_type) :: Bool
Checks if a Navigator is compatible with a given input type.
nav = @late_nav([ALL, pred(f)])
validate_path(nav, Vector{Int}) # => true
validate_path(nav, Dict{String, Int}) # => false ✗
# Causes @late_nav to reject the Navigator before caching
Type Signatures
navigator_signature(nav::Navigator) :: TypeSignature
Returns the full type signature of a cached Navigator.
nav = @late_nav([ALL, pred(iseven)])
sig = navigator_signature(nav)
# => TypeSignature(
# input: Vector{T},
# output: T,
# constraints: [iseven(T)],
# steps: [[ALL], [pred(iseven)]],
# valid_for: Vector{Int}, Vector{BigInt}, ...
# )
Polymorphic Inference
polymorphic_infer(path_expr) :: PolymorphicType
Infers the most general type for a path (before knowing input type).
polymorphic_infer([ALL, pred(iseven)])
# => ∀T. (T ∈ Enumerable, T ∈ HasEven) → T
# This means: works for ANY type T that:
# - Can be enumerated (Vector, Set, List, etc.)
# - Has an iseven() method defined
Integration with Caching
Cache keys now include type information:
cache_key = hash((path_expr, inferred_type))
# Different input types → different cache entries
nav_vec = @late_nav([ALL, pred(f)]) # cache for Vector
nav_set = @late_nav([ALL, pred(f)]) # cache for Set (if compatible)
# => Different NavigatorObjects, despite same path!
Refinement Types
Supports refinement types for predicates:
# pred(iseven) refines Int → EvenInt
# pred(x -> x > 5) refines Int → IntGt5
nav = @late_nav([ALL, pred(x -> x > 5)])
# Type: Vector{Int} → IntGt5
# (output is proven to be > 5)
Refinement types enable:
- Automatic constraint propagation downstream
- Proof that outputs satisfy predicates without re-checking
- Composition of constraints with type safety
Type Mismatch Examples
❌ INVALID: Wrong container type
nav = @late_nav([keypath("name"), ALL])
# Type error: keypath returns a string, ALL requires enumerable
# KeyPath{Dict, String} → String
# ALL{String} → ✗ (String not enumerable in that way)
❌ INVALID: Incompatible predicate
nav = @late_nav([ALL, pred(x -> x > 5)])
# If input is Vector{String}, predicate fails
# Type error: `(String > 5)` is nonsense
✓ VALID: Polymorphic path
nav = @late_nav([ALL, pred(identity)]) # identity always works
# Type: ∀T. Vector{T} → T
# Works for ANY vector type
Error Messages
Type validation errors are clear:
TypeError: Path composition invalid
Step 1: [ALL]
Input: Vector{Int}
Output: Int
✓ Type check passed
Step 2: [keypath("x")]
Input: Int
Output: ???
✗ TypeError: Cannot apply keypath to Int
keypath requires Dict or record type
Got: Int
Suggestion: Remove [keypath("x")] or ensure input is Dict/Struct
Performance
All type checking happens at compile time (during @late_nav expansion):
| Operation | Complexity | Notes |
|---|---|---|
| infer_type | O(|path|) | Single pass through steps |
| validate_path | O(1) | Cached signature lookup |
| polymorphic_infer | O(|path|) | Compute most general type |
| Runtime overhead | O(0) | Zero cost—all checks are static |
Composition with Other Skills
Works with Möbius Filtering:
- Möbius filters topological impossibilities
- Type Inference filters structural impossibilities
- Both must pass for path to compile
Works with Color Envelopes: Type signatures include color trit information:
nav = @late_nav([ALL, pred(f)]) # trit = -1 (filtering)
sig = navigator_signature(nav)
# => TypeSignature(..., trit: -1)
# Type system respects color: composition must balance trits AND types
Enables Constraint Generalization (next skill): Once types are proven, constraints can be composed and generalized safely.
Related Skills
- möbius-path-filtering - Topological validation (works alongside this)
- tuple-nav-composition - Uses type signatures to compose products
- constraint-generalization - Builds on type-proven constraints
- specter-navigator-gadget - Uses validated types for safe composition
References
- Gradual typing: "Gradual Typing for Functional Languages" - Siek & Taha
- Refinement types: "Liquid Haskell: Haskell as a Theorem Prover" - Jhala et al.
- Type inference: "Algorithm W: Inference of Data Types" - Damas & Milner