| name | xlsx |
| description | Comprehensive spreadsheet creation, editing, and analysis with support for formulas, formatting, data analysis, and visualization. When Claude needs to work with spreadsheets (.xlsx, .xlsm, .csv, .tsv, etc) for creating new spreadsheets, reading/analyzing data, modifying existing spreadsheets, or recalculating formulas. |
| license | Apache-2.0 |
| metadata | [object Object] |
Excel/Spreadsheet Processing
Reading and Analyzing Data
import pandas as pd
# Read Excel
df = pd.read_excel('file.xlsx') # Default: first sheet
all_sheets = pd.read_excel('file.xlsx', sheet_name=None) # All sheets as dict
# Analyze
df.head() # Preview data
df.info() # Column info
df.describe() # Statistics
# Write Excel
df.to_excel('output.xlsx', index=False)
Creating Excel Files with openpyxl
from openpyxl import Workbook
from openpyxl.styles import Font, PatternFill, Alignment
wb = Workbook()
sheet = wb.active
# Add data
sheet['A1'] = 'Hello'
sheet['B1'] = 'World'
sheet.append(['Row', 'of', 'data'])
# Add formula - ALWAYS use formulas, not hardcoded values
sheet['B2'] = '=SUM(A1:A10)'
# Formatting
sheet['A1'].font = Font(bold=True, color='FF0000')
sheet['A1'].fill = PatternFill('solid', start_color='FFFF00')
sheet['A1'].alignment = Alignment(horizontal='center')
# Column width
sheet.column_dimensions['A'].width = 20
wb.save('output.xlsx')
Editing Existing Files
from openpyxl import load_workbook
wb = load_workbook('existing.xlsx')
sheet = wb.active
# Modify cells
sheet['A1'] = 'New Value'
sheet.insert_rows(2)
sheet.delete_cols(3)
# Add new sheet
new_sheet = wb.create_sheet('NewSheet')
new_sheet['A1'] = 'Data'
wb.save('modified.xlsx')
Critical: Use Formulas, Not Hardcoded Values
# BAD - Hardcoding calculated values
total = df['Sales'].sum()
sheet['B10'] = total # Hardcodes 5000
# GOOD - Using Excel formulas
sheet['B10'] = '=SUM(B2:B9)'
sheet['C5'] = '=(C4-C2)/C2' # Growth rate
sheet['D20'] = '=AVERAGE(D2:D19)'
Financial Model Standards
- Blue text: Hardcoded inputs
- Black text: ALL formulas
- Green text: Links from other worksheets
- Yellow background: Key assumptions
Best Practices
- Use
data_only=Trueto read calculated values - For large files: Use
read_only=Trueorwrite_only=True - Formulas are preserved but not evaluated by openpyxl
Scientific Skill Interleaving
This skill connects to the K-Dense-AI/claude-scientific-skills ecosystem:
Graph Theory
- networkx [○] via bicomodule
- Universal graph hub
Bibliography References
general: 734 citations in bib.duckdb
Cat# Integration
This skill maps to Cat# = Comod(P) as a bicomodule in the equipment structure:
Trit: 0 (ERGODIC)
Home: Prof
Poly Op: ⊗
Kan Role: Adj
Color: #26D826
GF(3) Naturality
The skill participates in triads satisfying:
(-1) + (0) + (+1) ≡ 0 (mod 3)
This ensures compositional coherence in the Cat# equipment structure.