Claude Code Plugins

Community-maintained marketplace

Feedback

candidate-evaluation

@pollinations/pollinations
3.5k
0

Evaluate GitHub contributors for MLOps/engineering roles. Use when analyzing candidates, researching GitHub profiles, or updating CONTRIBUTORS.md with hiring assessments.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name candidate-evaluation
description Evaluate GitHub contributors for MLOps/engineering roles. Use when analyzing candidates, researching GitHub profiles, or updating CONTRIBUTORS.md with hiring assessments.
allowed-tools Read, Write, Edit, Grep, Bash(gh api:*), Bash(git:*)

Candidate Evaluation Skill

Evaluate GitHub contributors for engineering roles at Pollinations.

When to Use

  • User asks to evaluate a contributor or candidate
  • User wants to research GitHub profiles for hiring
  • User needs to update CONTRIBUTORS.md with candidate analysis
  • User mentions "hiring", "candidate", "MLOps", or "evaluate contributor"

Evaluation Criteria

Must-Have Skills (Weight: High)

  • Python: Primary language proficiency
  • DevOps: Docker, CI/CD, infrastructure
  • GPU/ML Deployment: Model serving, inference optimization

Nice-to-Have Skills (Weight: Medium)

  • Kubernetes, vLLM, TGI
  • Quantization (GGUF, ONNX)
  • CI/CD pipelines (GitHub Actions)

Work Style Indicators (Weight: Medium)

  • PR size preference (small, focused = good)
  • Response time to reviews
  • Documentation quality
  • Test coverage habits

Evaluation Process

  1. Gather Data via GitHub MCP or gh api:

    # Get user repos
    gh api users/{username}/repos --jq '.[].name'
    
    # Search PRs in pollinations
    gh api search/issues -X GET -f q='repo:pollinations/pollinations author:{username}'
    
    # Search code for MLOps keywords
    gh api search/code -X GET -f q='user:{username} docker OR kubernetes OR gpu OR vllm'
    
  2. Analyze Repositories for:

    • ML/AI projects (ComfyUI, HuggingFace, PyTorch)
    • DevOps tooling (Docker, CI/CD, scripts)
    • API/backend experience
    • Star counts and activity
  3. Check Pollinations Contributions:

    • Merged PRs (high signal)
    • Open issues/discussions
    • Project submissions
  4. Generate Profile with:

    • Fit score (1-10)
    • Strengths (bullet points)
    • Weaknesses (bullet points)
    • Key repositories table
    • Hiring recommendation

Output Format

Use ASCII box art for visual appeal:

┌─────────────────────────────────────────────────────────────────────────────┐
│  FIT: X.X/10  │  GitHub: username  │  Repos: N  │  Focus: Area             │
└─────────────────────────────────────────────────────────────────────────────┘

✅ STRENGTHS

  • Point 1
  • Point 2

❌ WEAKNESSES

  • Point 1
  • Point 2

📦 KEY REPOS

Repo Tech What It Does

🎯 VERDICT: Recommendation

Skills Matrix Format

╔═══════════════════╦════════╦════════╦════════╦═══════════════╗
║     CANDIDATE     ║ Python ║ GPU/ML ║ Docker ║   FIT SCORE   ║
╠═══════════════════╬════════╬════════╬════════╬═══════════════╣
║ username          ║ █████  ║ ███    ║ ████   ║     X.X/10    ║
╚═══════════════════╩════════╩════════╩════════╩═══════════════╝

Legend: █ = Skill Level (1-5)

Reference Files

  • pollinator-agent/CONTRIBUTORS.md - Current contributor analysis
  • AGENTS.md - Project guidelines and contributor attribution

Example Queries

  • "Evaluate @username for MLOps role"
  • "Research GitHub profile for {username}"
  • "Add {username} to CONTRIBUTORS.md"
  • "Compare candidates X and Y"