Claude Code Plugins

Community-maintained marketplace

Feedback
12.5k
0

>

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name prowler-mcp
description Creates MCP tools for Prowler MCP Server. Covers BaseTool pattern, model design, and API client usage. Use when working on mcp_server/ directory.
license Apache-2.0
metadata [object Object]
allowed-tools Read, Edit, Write, Glob, Grep, Bash, WebFetch, WebSearch, Task

Overview

The Prowler MCP Server uses three sub-servers with prefixed namespacing:

Sub-Server Prefix Auth Purpose
Prowler App prowler_app_* Required Cloud management tools
Prowler Hub prowler_hub_* No Security checks catalog
Prowler Docs prowler_docs_* No Documentation search

For complete architecture, patterns, and examples, see docs/developer-guide/mcp-server.mdx.


Critical Rules (Prowler App Only)

Tool Implementation

  • ALWAYS: Extend BaseTool (auto-registered via tool_loader.py, only public methods from the class are exposed as a tool)
  • NEVER: Manually register BaseTool subclasses
  • NEVER: Import tools directly in server.py

Models

  • ALWAYS: Use MinimalSerializerMixin for responses
  • ALWAYS: Implement from_api_response() factory method
  • ALWAYS: Use two-tier models (Simplified for lists, Detailed for single items)
  • NEVER: Return raw API responses

API Client

  • ALWAYS: Use self.api_client singleton
  • ALWAYS: Use build_filter_params() for query parameters
  • NEVER: Create new httpx clients

Hub/Docs Tools

Use @mcp.tool() decorator directly—no BaseTool or models required.


Quick Reference: New Prowler App Tool

  1. Create tool class in prowler_app/tools/ extending BaseTool
  2. Create models in prowler_app/models/ using MinimalSerializerMixin
  3. Tools auto-register via tool_loader.py

QA Checklist (Prowler App)

  • Tool docstrings describe LLM-relevant behavior
  • Models use MinimalSerializerMixin
  • API responses transformed to simplified models
  • Error handling returns {"error": str, "status": "failed"}
  • Parameters use Field() with descriptions
  • No hardcoded secrets

Resources