| name | at-dispatch-v2 |
| description | Convert PyTorch AT_DISPATCH macros to AT_DISPATCH_V2 format in ATen C++ code. Use when porting AT_DISPATCH_ALL_TYPES_AND*, AT_DISPATCH_FLOATING_TYPES*, or other dispatch macros to the new v2 API. For ATen kernel files, CUDA kernels, and native operator implementations. |
AT_DISPATCH to AT_DISPATCH_V2 Converter
This skill helps convert PyTorch's legacy AT_DISPATCH macros to the new AT_DISPATCH_V2 format, as defined in aten/src/ATen/Dispatch_v2.h.
When to use this skill
Use this skill when:
- Converting AT_DISPATCH_* macros to AT_DISPATCH_V2
- Porting ATen kernels to use the new dispatch API
- Working with files in
aten/src/ATen/native/that use dispatch macros - User mentions "AT_DISPATCH", "dispatch v2", "Dispatch_v2.h", or macro conversion
Quick reference
Old format:
AT_DISPATCH_ALL_TYPES_AND3(kBFloat16, kHalf, kBool, dtype, "kernel_name", [&]() {
// lambda body
});
New format:
AT_DISPATCH_V2(dtype, "kernel_name", AT_WRAP([&]() {
// lambda body
}), AT_EXPAND(AT_ALL_TYPES), kBFloat16, kHalf, kBool);
Key transformations
- Reorder arguments:
scalar_typeandnamecome first, then lambda, then types - Wrap the lambda: Use
AT_WRAP(lambda)to handle internal commas - Expand type groups: Use
AT_EXPAND(AT_ALL_TYPES)instead of implicit expansion - List individual types: Add extra types (kHalf, kBFloat16, etc.) after expanded groups
- Add include:
#include <ATen/Dispatch_v2.h>near other Dispatch includes
Instructions
Step 1: Add the Dispatch_v2.h include
Add the v2 header near the existing #include <ATen/Dispatch.h>:
#include <ATen/Dispatch.h>
#include <ATen/Dispatch_v2.h>
Keep the old Dispatch.h include for now (other code may still need it).
Step 2: Identify the old dispatch pattern
Common patterns to convert:
AT_DISPATCH_ALL_TYPES_AND{2,3,4}(type1, type2, ..., scalar_type, name, lambda)AT_DISPATCH_FLOATING_TYPES_AND{2,3}(type1, type2, ..., scalar_type, name, lambda)AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND{2,3}(type1, ..., scalar_type, name, lambda)AT_DISPATCH_FLOATING_AND_COMPLEX_TYPES_AND{2,3}(type1, ..., scalar_type, name, lambda)
Step 3: Map the old macro to type groups
Identify which type group macro corresponds to the base types:
| Old macro base | AT_DISPATCH_V2 type group |
|---|---|
ALL_TYPES |
AT_EXPAND(AT_ALL_TYPES) |
FLOATING_TYPES |
AT_EXPAND(AT_FLOATING_TYPES) |
INTEGRAL_TYPES |
AT_EXPAND(AT_INTEGRAL_TYPES) |
COMPLEX_TYPES |
AT_EXPAND(AT_COMPLEX_TYPES) |
ALL_TYPES_AND_COMPLEX |
AT_EXPAND(AT_ALL_TYPES_AND_COMPLEX) |
For combined patterns, use multiple AT_EXPAND() entries:
// Old: AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(...)
// New: AT_EXPAND(AT_ALL_TYPES), AT_EXPAND(AT_COMPLEX_TYPES), type1, type2
Step 4: Extract the individual types
From AT_DISPATCH_*_AND2(type1, type2, ...) or AT_DISPATCH_*_AND3(type1, type2, type3, ...), extract the individual types (type1, type2, etc.).
These become the trailing arguments after the type group:
AT_DISPATCH_V2(..., AT_EXPAND(AT_ALL_TYPES), kBFloat16, kHalf, kBool)
^^^^^^^^^^^^^^^^^^^^^^^^
Individual types from AND3
Step 5: Transform to AT_DISPATCH_V2
Apply the transformation:
Pattern:
AT_DISPATCH_V2(
scalar_type, // 1st: The dtype expression
"name", // 2nd: The debug string
AT_WRAP(lambda), // 3rd: The lambda wrapped in AT_WRAP
type_groups, // 4th+: Type groups with AT_EXPAND()
individual_types // Last: Individual types
)
Example transformation:
// BEFORE
AT_DISPATCH_ALL_TYPES_AND3(
kBFloat16, kHalf, kBool,
iter.dtype(),
"min_values_cuda",
[&]() {
min_values_kernel_cuda_impl<scalar_t>(iter);
}
);
// AFTER
AT_DISPATCH_V2(
iter.dtype(),
"min_values_cuda",
AT_WRAP([&]() {
min_values_kernel_cuda_impl<scalar_t>(iter);
}),
AT_EXPAND(AT_ALL_TYPES),
kBFloat16, kHalf, kBool
);
Step 6: Handle multi-line lambdas
For lambdas with internal commas or complex expressions, AT_WRAP is essential:
AT_DISPATCH_V2(
dtype,
"complex_kernel",
AT_WRAP([&]() {
gpu_reduce_kernel<scalar_t, scalar_t>(
iter,
MinOps<scalar_t>{},
thrust::pair<scalar_t, int64_t>(upper_bound(), 0) // Commas inside!
);
}),
AT_EXPAND(AT_ALL_TYPES)
);
Step 7: Verify the conversion
Check that:
-
AT_WRAP()wraps the entire lambda - Type groups use
AT_EXPAND() - Individual types don't have
AT_EXPAND()(justkBFloat16, notAT_EXPAND(kBFloat16)) - Argument order is: scalar_type, name, lambda, types
- Include added:
#include <ATen/Dispatch_v2.h>
Type group reference
Available type group macros (use with AT_EXPAND()):
AT_INTEGRAL_TYPES // kByte, kChar, kInt, kLong, kShort
AT_FLOATING_TYPES // kDouble, kFloat
AT_COMPLEX_TYPES // kComplexDouble, kComplexFloat
AT_QINT_TYPES // kQInt8, kQUInt8, kQInt32
AT_ALL_TYPES // INTEGRAL_TYPES + FLOATING_TYPES
AT_ALL_TYPES_AND_COMPLEX // ALL_TYPES + COMPLEX_TYPES
AT_INTEGRAL_TYPES_V2 // INTEGRAL_TYPES + unsigned types
AT_BAREBONES_UNSIGNED_TYPES // kUInt16, kUInt32, kUInt64
AT_FLOAT8_TYPES // Float8 variants
Common patterns
Pattern: AT_DISPATCH_ALL_TYPES_AND2
// Before
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBFloat16, dtype, "op", [&]() {
kernel<scalar_t>(data);
});
// After
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>(data);
}), AT_EXPAND(AT_ALL_TYPES), kHalf, kBFloat16);
Pattern: AT_DISPATCH_FLOATING_TYPES_AND3
// Before
AT_DISPATCH_FLOATING_TYPES_AND3(kHalf, kBFloat16, kFloat8_e4m3fn,
tensor.scalar_type(), "float_op", [&] {
process<scalar_t>(tensor);
});
// After
AT_DISPATCH_V2(tensor.scalar_type(), "float_op", AT_WRAP([&] {
process<scalar_t>(tensor);
}), AT_EXPAND(AT_FLOATING_TYPES), kHalf, kBFloat16, kFloat8_e4m3fn);
Pattern: AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2
// Before
AT_DISPATCH_ALL_TYPES_AND_COMPLEX_AND2(
kComplexHalf, kHalf,
self.scalar_type(),
"complex_op",
[&] {
result = compute<scalar_t>(self);
}
);
// After
AT_DISPATCH_V2(
self.scalar_type(),
"complex_op",
AT_WRAP([&] {
result = compute<scalar_t>(self);
}),
AT_EXPAND(AT_ALL_TYPES),
AT_EXPAND(AT_COMPLEX_TYPES),
kComplexHalf,
kHalf
);
Edge cases
Case 1: No extra types (rare)
// Before
AT_DISPATCH_ALL_TYPES(dtype, "op", [&]() { kernel<scalar_t>(); });
// After
AT_DISPATCH_V2(dtype, "op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_ALL_TYPES));
Case 2: Many individual types (AND4, AND5, etc.)
// Before
AT_DISPATCH_FLOATING_TYPES_AND4(kHalf, kBFloat16, kFloat8_e4m3fn, kFloat8_e5m2,
dtype, "float8_op", [&]() { kernel<scalar_t>(); });
// After
AT_DISPATCH_V2(dtype, "float8_op", AT_WRAP([&]() {
kernel<scalar_t>();
}), AT_EXPAND(AT_FLOATING_TYPES), kHalf, kBFloat16, kFloat8_e4m3fn, kFloat8_e5m2);
Case 3: Lambda with no captures
// Before
AT_DISPATCH_ALL_TYPES_AND2(kHalf, kBool, dtype, "op", []() {
static_kernel<scalar_t>();
});
// After
AT_DISPATCH_V2(dtype, "op", AT_WRAP([]() {
static_kernel<scalar_t>();
}), AT_EXPAND(AT_ALL_TYPES), kHalf, kBool);
Benefits of AT_DISPATCH_V2
- No arity in macro name: Don't need different macros for AND2, AND3, AND4
- Composable type sets: Mix and match type groups with
AT_EXPAND() - Extensible: Easy to add more types without hitting macro limits
- Clearer: Type groups are explicit, not implicit in macro name
Important notes
- Keep
#include <ATen/Dispatch.h>- other code may need it - The
AT_WRAP()is mandatory - prevents comma parsing issues in the lambda - Type groups need
AT_EXPAND(), individual types don't - The v2 API is in
aten/src/ATen/Dispatch_v2.h- refer to it for full docs - See the header file for the Python script to regenerate the macro implementation
Workflow
When asked to convert AT_DISPATCH macros:
- Read the file to identify all AT_DISPATCH uses
- Add
#include <ATen/Dispatch_v2.h>if not present - For each dispatch macro:
- Identify the pattern and extract components
- Map the base type group
- Extract individual types
- Construct the AT_DISPATCH_V2 call
- Apply with Edit tool
- Show the user the complete converted file
- Explain what was changed
Do NOT compile or test the code - focus on accurate conversion only.