Claude Code Plugins

Community-maintained marketplace

Feedback
94.7k
0

Write docstrings for PyTorch functions and methods following PyTorch conventions. Use when writing or updating docstrings in PyTorch code.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name docstring
description Write docstrings for PyTorch functions and methods following PyTorch conventions. Use when writing or updating docstrings in PyTorch code.

PyTorch Docstring Writing Guide

This skill describes how to write docstrings for functions and methods in the PyTorch project, following the conventions in torch/_tensor_docs.py and torch/nn/functional.py.

General Principles

  • Use raw strings (r"""...""") for all docstrings to avoid issues with LaTeX/math backslashes
  • Follow Sphinx/reStructuredText (reST) format for documentation
  • Be concise but complete - include all essential information
  • Always include examples when possible
  • Use cross-references to related functions/classes

Docstring Structure

1. Function Signature (First Line)

Start with the function signature showing all parameters:

r"""function_name(param1, param2, *, kwarg1=default1, kwarg2=default2) -> ReturnType

Notes:

  • Include the function name
  • Show positional and keyword-only arguments (use * separator)
  • Include default values
  • Show return type annotation
  • This line should NOT end with a period

2. Brief Description

Provide a one-line description of what the function does:

r"""conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor

Applies a 2D convolution over an input image composed of several input
planes.

3. Mathematical Formulas (if applicable)

Use Sphinx math directives for mathematical expressions:

.. math::
    \text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}

Or inline math: :math:\x^2``

4. Cross-References

Link to related classes and functions using Sphinx roles:

  • :class:\~torch.nn.ModuleName`` - Link to a class
  • :func:\torch.function_name`` - Link to a function
  • :meth:\~Tensor.method_name`` - Link to a method
  • :attr:\attribute_name`` - Reference an attribute
  • The ~ prefix shows only the last component (e.g., Conv2d instead of torch.nn.Conv2d)

Example:

See :class:`~torch.nn.Conv2d` for details and output shape.

5. Notes and Warnings

Use admonitions for important information:

.. note::
    This function doesn't work directly with NLLLoss,
    which expects the Log to be computed between the Softmax and itself.
    Use log_softmax instead (it's faster and has better numerical properties).

.. warning::
    :func:`new_tensor` always copies :attr:`data`. If you have a Tensor
    ``data`` and want to avoid a copy, use :func:`torch.Tensor.requires_grad_`
    or :func:`torch.Tensor.detach`.

6. Args Section

Document all parameters with type annotations and descriptions:

Args:
    input (Tensor): input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
    weight (Tensor): filters of shape :math:`(\text{out\_channels} , kH , kW)`
    bias (Tensor, optional): optional bias tensor of shape :math:`(\text{out\_channels})`. Default: ``None``
    stride (int or tuple): the stride of the convolving kernel. Can be a single number or a
      tuple `(sH, sW)`. Default: 1

Formatting rules:

  • Parameter name in lowercase
  • Type in parentheses: (Type), (Type, optional) for optional parameters
  • Description follows the type
  • For optional parameters, include "Default: value" at the end
  • Use double backticks for inline code: ``None``
  • Indent continuation lines by 2 spaces

7. Keyword Args Section (if applicable)

Sometimes keyword arguments are documented separately:

Keyword args:
    dtype (:class:`torch.dtype`, optional): the desired type of returned tensor.
        Default: if None, same :class:`torch.dtype` as this tensor.
    device (:class:`torch.device`, optional): the desired device of returned tensor.
        Default: if None, same :class:`torch.device` as this tensor.
    requires_grad (bool, optional): If autograd should record operations on the
        returned tensor. Default: ``False``.

8. Returns Section (if needed)

Document the return value:

Returns:
    Tensor: Sampled tensor of same shape as `logits` from the Gumbel-Softmax distribution.
        If ``hard=True``, the returned samples will be one-hot, otherwise they will
        be probability distributions that sum to 1 across `dim`.

Or simply include it in the function signature line if obvious from context.

9. Examples Section

Always include examples when possible:

Examples::

    >>> inputs = torch.randn(33, 16, 30)
    >>> filters = torch.randn(20, 16, 5)
    >>> F.conv1d(inputs, filters)

    >>> # With square kernels and equal stride
    >>> filters = torch.randn(8, 4, 3, 3)
    >>> inputs = torch.randn(1, 4, 5, 5)
    >>> F.conv2d(inputs, filters, padding=1)

Formatting rules:

  • Use Examples:: with double colon
  • Use >>> prompt for Python code
  • Include comments with # when helpful
  • Show actual output when it helps understanding (indent without >>>)

10. External References

Link to papers or external documentation:

.. _Link Name:
    https://arxiv.org/abs/1611.00712

Reference them in text: See `Link Name`_

Method Types

Native Python Functions

For regular Python functions, use a standard docstring:

def relu(input: Tensor, inplace: bool = False) -> Tensor:
    r"""relu(input, inplace=False) -> Tensor

    Applies the rectified linear unit function element-wise. See
    :class:`~torch.nn.ReLU` for more details.
    """
    # implementation

C-Bound Functions (using add_docstr)

For C-bound functions, use _add_docstr:

conv1d = _add_docstr(
    torch.conv1d,
    r"""
conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor

Applies a 1D convolution over an input signal composed of several input
planes.

See :class:`~torch.nn.Conv1d` for details and output shape.

Args:
    input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`
    weight: filters of shape :math:`(\text{out\_channels} , kW)`
    ...
""",
)

In-Place Variants

For in-place operations (ending with _), reference the original:

add_docstr_all(
    "abs_",
    r"""
abs_() -> Tensor

In-place version of :meth:`~Tensor.abs`
""",
)

Alias Functions

For aliases, simply reference the original:

add_docstr_all(
    "absolute",
    r"""
absolute() -> Tensor

Alias for :func:`abs`
""",
)

Common Patterns

Shape Documentation

Use LaTeX math notation for tensor shapes:

:math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`

Reusable Argument Definitions

For commonly used arguments, define them once and reuse:

common_args = parse_kwargs(
    """
    dtype (:class:`torch.dtype`, optional): the desired type of returned tensor.
        Default: if None, same as this tensor.
"""
)

# Then use with .format():
r"""
...

Keyword args:
    {dtype}
    {device}
""".format(**common_args)

Template Insertion

Insert reproducibility notes or other common text:

r"""
{tf32_note}

{cudnn_reproducibility_note}
""".format(**reproducibility_notes, **tf32_notes)

Complete Example

Here's a complete example showing all elements:

def gumbel_softmax(
    logits: Tensor,
    tau: float = 1,
    hard: bool = False,
    eps: float = 1e-10,
    dim: int = -1,
) -> Tensor:
    r"""
    Sample from the Gumbel-Softmax distribution and optionally discretize.

    Args:
        logits (Tensor): `[..., num_features]` unnormalized log probabilities
        tau (float): non-negative scalar temperature
        hard (bool): if ``True``, the returned samples will be discretized as one-hot vectors,
              but will be differentiated as if it is the soft sample in autograd. Default: ``False``
        dim (int): A dimension along which softmax will be computed. Default: -1

    Returns:
        Tensor: Sampled tensor of same shape as `logits` from the Gumbel-Softmax distribution.
            If ``hard=True``, the returned samples will be one-hot, otherwise they will
            be probability distributions that sum to 1 across `dim`.

    .. note::
        This function is here for legacy reasons, may be removed from nn.Functional in the future.

    Examples::
        >>> logits = torch.randn(20, 32)
        >>> # Sample soft categorical using reparametrization trick:
        >>> F.gumbel_softmax(logits, tau=1, hard=False)
        >>> # Sample hard categorical using "Straight-through" trick:
        >>> F.gumbel_softmax(logits, tau=1, hard=True)

    .. _Link 1:
        https://arxiv.org/abs/1611.00712
    """
    # implementation

Quick Checklist

When writing a PyTorch docstring, ensure:

  • Use raw string (r""")
  • Include function signature on first line
  • Provide brief description
  • Document all parameters in Args section with types
  • Include default values for optional parameters
  • Use Sphinx cross-references (:func:, :class:, :meth:)
  • Add mathematical formulas if applicable
  • Include at least one example in Examples section
  • Add warnings/notes for important caveats
  • Link to related module class with :class:
  • Use proper math notation for tensor shapes
  • Follow consistent formatting and indentation

Common Sphinx Roles Reference

  • :class:\~torch.nn.Module`` - Class reference
  • :func:\torch.function`` - Function reference
  • :meth:\~Tensor.method`` - Method reference
  • :attr:\attribute`` - Attribute reference
  • :math:\equation`` - Inline math
  • :ref:\label`` - Internal reference
  • ``code`` - Inline code (use double backticks)

Additional Notes

  • Indentation: Use 4 spaces for code, 2 spaces for continuation of parameter descriptions
  • Line length: Try to keep lines under 100 characters when possible
  • Periods: End sentences with periods, but not the signature line
  • Backticks: Use double backticks for code: ``True`` ``None`` ``False``
  • Types: Common types are Tensor, int, float, bool, str, tuple, list, etc.