| name | observable-gepa-migration |
| description | Migrate DSPy GEPA usage in DSPy from the original to gepa-observable. This makes it possible for teams to clearly review each iteration and the lineage to understand how their prompt is evolving. The repository offers a web dashboard for monitoring, but requires a custom GEPA fork that provides custom observers and LM call logging. Use when developers want to add observability to GEPA optimization. |
Migrate DSPy GEPA to gepa-observable
Migrate existing DSPy GEPA code to gepa-observable for integrated observability: real-time dashboard, custom observer callbacks, and LM call capture working together.
Quick Migration
Step 1: Install gepa-observable
pip install dspy-gepa-logger
Step 2: Change Import
# Before
from dspy.teleprompt import GEPA
# After
from gepa_observable import GEPA
Step 3: Add Observability (Full System)
from gepa_observable import GEPA
optimizer = GEPA(
metric=my_metric,
auto="medium",
# Observability system:
server_url="http://your-server:3000", # Dashboard integration
project_name="My Project",
capture_lm_calls=True, # LM call logging
capture_stdout=True, # Console capture
verbose=True, # LoggingObserver
observers=[MyCustomObserver()], # Custom callbacks
)
Step 4: Everything Else Stays the Same
- Metric functions (5-arg signature already required by DSPy GEPA)
- Program definitions (ChainOfThought, ReAct, etc.)
- Training/validation data format
- Budget params (auto, max_full_evals, max_metric_calls)
- compile() call:
optimizer.compile(student=program, trainset=train, valset=val)
The Observability System
gepa-observable provides an integrated observability system where all components work together:
| Component | Purpose | Enabled By |
|---|---|---|
| ServerObserver | Sends events to web dashboard | server_url param |
| LoggingObserver | Console output with summaries | verbose=True |
| LM Call Logger | Captures all LM invocations | capture_lm_calls=True |
| Custom Observers | Your callbacks for any event | observers=[...] |
All observers receive the same 8 lifecycle events:
SeedValidationEvent- Initial validation scoresIterationStartEvent- Each optimization iterationMiniBatchEvalEvent- Minibatch evaluationsReflectionEvent- Proposed prompt changesAcceptanceDecisionEvent- Accept/reject decisionsValsetEvalEvent- Full validation evaluationsMergeEvent- Candidate merge operationsOptimizationCompleteEvent- Final results
Custom Observer Example
class MyObserver:
def on_seed_validation(self, event):
avg = sum(event.valset_scores.values()) / len(event.valset_scores)
print(f"Seed score: {avg:.2%}")
def on_iteration_start(self, event):
print(f"Iteration {event.iteration}, parent score: {event.parent_score:.2%}")
def on_reflection(self, event):
for comp, text in event.proposed_texts.items():
print(f"Proposing for {comp}: {text[:100]}...")
def on_valset_eval(self, event):
if event.is_new_best:
print(f"NEW BEST: {event.valset_score:.2%}")
def on_optimization_complete(self, event):
print(f"Done! Best: {event.best_score:.2%} in {event.total_iterations} iters")
# Use with other observers - they all work together
optimizer = GEPA(
metric=my_metric,
auto="medium",
server_url="http://localhost:3000",
observers=[MyObserver()],
verbose=True, # Also keep LoggingObserver
)
Migration Checklist
For Notebooks
- Install:
pip install dspy-gepa-logger - Change import:
from gepa_observable import GEPA - Add
server_urlfor dashboard - Add custom observers if needed
- Run cells in order - API is 100% compatible
For Scripts
- Install:
pip install dspy-gepa-logger - Find all
from dspy.teleprompt import GEPA - Replace import
- Add observability parameters to GEPA constructor
- No other changes needed
References
references/api-reference.md- Complete parameter docs, observer protocol, all event typesreferences/examples.md- Full before/after code examples