| name | ollama |
| description | Ollama API Documentation |
Ollama Skill
Comprehensive assistance with Ollama development - the local AI model runtime for running and interacting with large language models programmatically.
When to Use This Skill
This skill should be triggered when:
- Running local AI models with Ollama
- Building applications that interact with Ollama's API
- Implementing chat completions, embeddings, or streaming responses
- Setting up Ollama authentication or cloud models
- Configuring Ollama server (environment variables, ports, proxies)
- Using Ollama with OpenAI-compatible libraries
- Troubleshooting Ollama installations or GPU compatibility
- Implementing tool calling, structured outputs, or vision capabilities
- Working with Ollama in Docker or behind proxies
- Creating, copying, pushing, or managing Ollama models
Quick Reference
1. Basic Chat Completion (cURL)
Generate a simple chat response:
curl http://localhost:11434/api/chat -d '{
"model": "gemma3",
"messages": [
{
"role": "user",
"content": "Why is the sky blue?"
}
]
}'
2. Simple Text Generation (cURL)
Generate a text response from a prompt:
curl http://localhost:11434/api/generate -d '{
"model": "gemma3",
"prompt": "Why is the sky blue?"
}'
3. Python Chat with OpenAI Library
Use Ollama with the OpenAI Python library:
from openai import OpenAI
client = OpenAI(
base_url='http://localhost:11434/v1/',
api_key='ollama', # required but ignored
)
chat_completion = client.chat.completions.create(
messages=[
{
'role': 'user',
'content': 'Say this is a test',
}
],
model='llama3.2',
)
4. Vision Model (Image Analysis)
Ask questions about images:
from openai import OpenAI
client = OpenAI(base_url="http://localhost:11434/v1/", api_key="ollama")
response = client.chat.completions.create(
model="llava",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": "...",
},
],
}
],
max_tokens=300,
)
5. Generate Embeddings
Create vector embeddings for text:
client = OpenAI(base_url="http://localhost:11434/v1", api_key="ollama")
embeddings = client.embeddings.create(
model="all-minilm",
input=["why is the sky blue?", "why is the grass green?"],
)
6. Structured Outputs (JSON Schema)
Get structured JSON responses:
from pydantic import BaseModel
from openai import OpenAI
client = OpenAI(base_url="http://localhost:11434/v1", api_key="ollama")
class FriendInfo(BaseModel):
name: str
age: int
is_available: bool
class FriendList(BaseModel):
friends: list[FriendInfo]
completion = client.beta.chat.completions.parse(
temperature=0,
model="llama3.1:8b",
messages=[
{"role": "user", "content": "Return a list of friends in JSON format"}
],
response_format=FriendList,
)
friends_response = completion.choices[0].message
if friends_response.parsed:
print(friends_response.parsed)
7. JavaScript/TypeScript Chat
Use Ollama with the OpenAI JavaScript library:
import OpenAI from "openai";
const openai = new OpenAI({
baseURL: "http://localhost:11434/v1/",
apiKey: "ollama", // required but ignored
});
const chatCompletion = await openai.chat.completions.create({
messages: [{ role: "user", content: "Say this is a test" }],
model: "llama3.2",
});
8. Authentication for Cloud Models
Sign in to use cloud models:
# Sign in from CLI
ollama signin
# Then use cloud models
ollama run gpt-oss:120b-cloud
Or use API keys for direct cloud access:
export OLLAMA_API_KEY=your_api_key
curl https://ollama.com/api/generate \
-H "Authorization: Bearer $OLLAMA_API_KEY" \
-d '{
"model": "gpt-oss:120b",
"prompt": "Why is the sky blue?",
"stream": false
}'
9. Configure Ollama Server
Set environment variables for server configuration:
macOS:
# Set environment variable
launchctl setenv OLLAMA_HOST "0.0.0.0:11434"
# Restart Ollama application
Linux (systemd):
# Edit service
systemctl edit ollama.service
# Add under [Service]
Environment="OLLAMA_HOST=0.0.0.0:11434"
# Reload and restart
systemctl daemon-reload
systemctl restart ollama
Windows:
1. Quit Ollama from task bar
2. Search "environment variables" in Settings
3. Edit or create OLLAMA_HOST variable
4. Set value: 0.0.0.0:11434
5. Restart Ollama from Start menu
10. Check Model GPU Loading
Verify if your model is using GPU:
ollama ps
Output shows:
100% GPU- Fully loaded on GPU100% CPU- Fully loaded in system memory48%/52% CPU/GPU- Split between both
Key Concepts
Base URLs
- Local API (default):
http://localhost:11434/api - Cloud API:
https://ollama.com/api - OpenAI Compatible:
/v1/endpoints for OpenAI libraries
Authentication
- Local: No authentication required for
http://localhost:11434 - Cloud Models: Requires signing in (
ollama signin) or API key - API Keys: For programmatic access to
https://ollama.com/api
Models
- Local Models: Run on your machine (e.g.,
gemma3,llama3.2,qwen3) - Cloud Models: Suffix
-cloud(e.g.,gpt-oss:120b-cloud,qwen3-coder:480b-cloud) - Vision Models: Support image inputs (e.g.,
llava)
Common Environment Variables
OLLAMA_HOST- Change bind address (default:127.0.0.1:11434)OLLAMA_CONTEXT_LENGTH- Context window size (default:2048tokens)OLLAMA_MODELS- Model storage directoryOLLAMA_ORIGINS- Allow additional web origins for CORSHTTPS_PROXY- Proxy server for model downloads
Error Handling
Status Codes:
200- Success400- Bad Request (invalid parameters)404- Not Found (model doesn't exist)429- Too Many Requests (rate limit)500- Internal Server Error502- Bad Gateway (cloud model unreachable)
Error Format:
{
"error": "the model failed to generate a response"
}
Streaming vs Non-Streaming
- Streaming (default): Returns response chunks as JSON objects (NDJSON)
- Non-Streaming: Set
"stream": falseto get complete response in one object
Reference Files
This skill includes comprehensive documentation in references/:
llms-txt.md - Complete API reference covering:
- All API endpoints (
/api/generate,/api/chat,/api/embed, etc.) - Authentication methods (signin, API keys)
- Error handling and status codes
- OpenAI compatibility layer
- Cloud models usage
- Streaming responses
- Configuration and environment variables
- All API endpoints (
llms.md - Documentation index listing all available topics:
- API reference (version, model details, chat, generate, embeddings)
- Capabilities (embeddings, streaming, structured outputs, tool calling, vision)
- CLI reference
- Cloud integration
- Platform-specific guides (Linux, macOS, Windows, Docker)
- IDE integrations (VS Code, JetBrains, Xcode, Zed, Cline)
Use the reference files when you need:
- Detailed API parameter specifications
- Complete endpoint documentation
- Advanced configuration options
- Platform-specific setup instructions
- Integration guides for specific tools
Working with This Skill
For Beginners
Start with these common patterns:
- Simple generation: Use
/api/generateendpoint with a prompt - Chat interface: Use
/api/chatwith messages array - OpenAI compatibility: Use OpenAI libraries with
base_url='http://localhost:11434/v1/' - Check GPU usage: Run
ollama psto verify model loading
Read llms-txt.md section on "Introduction" and "Quickstart" for foundational concepts.
For Intermediate Users
Focus on:
- Embeddings for semantic search and RAG applications
- Structured outputs with JSON schema validation
- Vision models for image analysis
- Streaming for real-time response generation
- Authentication for cloud models
Check the specific API endpoints in llms-txt.md for detailed parameter options.
For Advanced Users
Explore:
- Tool calling for function execution
- Custom model creation with Modelfiles
- Server configuration with environment variables
- Proxy setup for network-restricted environments
- Docker deployment with custom configurations
- Performance optimization with GPU settings
Refer to platform-specific sections in llms.md and configuration details in llms-txt.md.
Common Use Cases
Building a chatbot:
- Use
/api/chatendpoint - Maintain message history in your application
- Stream responses for better UX
- Handle errors gracefully
Creating embeddings for search:
- Use
/api/embedendpoint - Store embeddings in vector database
- Perform similarity search
- Implement RAG (Retrieval Augmented Generation)
Running behind a firewall:
- Set
HTTPS_PROXYenvironment variable - Configure proxy in Docker if containerized
- Ensure certificates are trusted
Using cloud models:
- Run
ollama signinonce - Pull cloud models with
-cloudsuffix - Use same API endpoints as local models
Troubleshooting
Model Not Loading on GPU
Check:
ollama ps
Solutions:
- Verify GPU compatibility in documentation
- Check CUDA/ROCm installation
- Review available VRAM
- Try smaller model variants
Cannot Access Ollama Remotely
Problem: Ollama only accessible from localhost
Solution:
# Set OLLAMA_HOST to bind to all interfaces
export OLLAMA_HOST="0.0.0.0:11434"
See "How do I configure Ollama server?" in llms-txt.md for platform-specific instructions.
Proxy Issues
Problem: Cannot download models behind proxy
Solution:
# Set proxy (HTTPS only, not HTTP)
export HTTPS_PROXY=https://proxy.example.com
# Restart Ollama
See "How do I use Ollama behind a proxy?" in llms-txt.md.
CORS Errors in Browser
Problem: Browser extension or web app cannot access Ollama
Solution:
# Allow specific origins
export OLLAMA_ORIGINS="chrome-extension://*,moz-extension://*"
See "How can I allow additional web origins?" in llms-txt.md.
Resources
Official Documentation
- Main docs: https://docs.ollama.com
- API Reference: https://docs.ollama.com/api
- Model Library: https://ollama.com/models
Official Libraries
- Python: https://github.com/ollama/ollama-python
- JavaScript: https://github.com/ollama/ollama-js
Community
- GitHub: https://github.com/ollama/ollama
- Community Libraries: See GitHub README for full list
Notes
- This skill was generated from official Ollama documentation
- All examples are tested and working with Ollama's API
- Code samples include proper language detection for syntax highlighting
- Reference files preserve structure from official docs with working links
- OpenAI compatibility means most OpenAI code works with minimal changes
Quick Command Reference
# CLI Commands
ollama signin # Sign in to ollama.com
ollama run gemma3 # Run a model interactively
ollama pull gemma3 # Download a model
ollama ps # List running models
ollama list # List installed models
# Check API Status
curl http://localhost:11434/api/version
# Environment Variables (Common)
export OLLAMA_HOST="0.0.0.0:11434"
export OLLAMA_CONTEXT_LENGTH=8192
export OLLAMA_ORIGINS="*"
export HTTPS_PROXY="https://proxy.example.com"