Claude Code Plugins

Community-maintained marketplace

Feedback

moai-foundation-core

@rdmptv/AdbAutoPlayer
0
0

MoAI-ADK's foundational principles - TRUST 5, SPEC-First TDD, delegation patterns, token optimization, progressive disclosure, modular architecture, agent catalog, command reference, and execution rules for building AI-powered development workflows

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name moai-foundation-core
description MoAI-ADK's foundational principles - TRUST 5, SPEC-First TDD, delegation patterns, token optimization, progressive disclosure, modular architecture, agent catalog, command reference, and execution rules for building AI-powered development workflows
version 2.2.0
modularized true
allowed-tools Read, Grep, Glob
last_updated Sun Nov 30 2025 00:00:00 GMT+0000 (Coordinated Universal Time)
compliance_score 75
auto_trigger_keywords authentication, core, foundation
color red

MoAI Foundation Core

Foundational principles and architectural patterns that power MoAI-ADK's AI-driven development workflow.

Core Philosophy: Quality-first, test-driven, modular, and efficient AI development through proven patterns and automated workflows.

Quick Reference (30 seconds)

What is MoAI Foundation Core? Six essential principles that ensure quality, efficiency, and scalability in AI-powered development:

  1. TRUST 5 Framework - Quality gate system (Test-first, Readable, Unified, Secured, Trackable)
  2. SPEC-First TDD - Specification-driven test-driven development workflow
  3. Delegation Patterns - Task orchestration via specialized agents (never direct execution)
  4. Token Optimization - 200K budget management and context efficiency
  5. Progressive Disclosure - Three-tier knowledge delivery (Quick → Implementation → Advanced)
  6. Modular System - File splitting and reference architecture for scalability

Quick Access:

Use Cases:

  • ✅ New agent creation with quality standards
  • ✅ New skill development with structural guidelines
  • ✅ Complex workflow orchestration
  • ✅ Token budget planning and optimization
  • ✅ Documentation architecture design
  • ✅ Quality gate configuration

Implementation Guide (5 minutes)

1. TRUST 5 Framework - Quality Assurance System

Purpose: Automated quality gates ensuring code quality, security, and maintainability.

Five Pillars:

Pillar Requirement Validation Failure Action
Test-first ≥85% coverage pytest --cov Block merge, generate tests
Readable Clear naming ruff linter Warning, suggest refactor
Unified Consistent patterns black, isort Auto-format or warn
Secured OWASP compliance security-expert Block merge, review
Trackable Clear commits Git regex Suggest format

Integration Points:

  • Pre-commit hooks → Automated validation
  • CI/CD pipelines → Quality gate enforcement
  • Agent workflows → core-quality validation
  • Documentation → Quality metrics

Detailed Reference: TRUST 5 Framework Module


2. SPEC-First TDD - Development Workflow

Purpose: Specification-driven development ensuring clear requirements before implementation.

Three-Phase Workflow:

Phase 1: SPEC (/moai:1-plan)
├─ workflow-spec → EARS format
├─ Output: .moai/specs/SPEC-XXX/spec.md
└─ Execute /clear (saves 45-50K tokens)

Phase 2: TDD (/moai:2-run)
├─ RED: Failing tests
├─ GREEN: Passing code
├─ REFACTOR: Optimize
└─ Validate: ≥85% coverage

Phase 3: Docs (/moai:3-sync)
├─ API documentation
├─ Architecture diagrams
└─ Project reports

EARS Format:

  • Ubiquitous: System-wide (always active)
  • Event-driven: Trigger-based (when X, do Y)
  • State-driven: Conditional (while X, do Y)
  • Unwanted: Prohibited (shall not do X)
  • Optional: Nice-to-have (where possible, do X)

Token Budget: SPEC 30K | TDD 180K | Docs 40K | Total 250K

Key Practice: Execute /clear after Phase 1 to initialize context.

Detailed Reference: SPEC-First TDD Module


3. Delegation Patterns - Agent Orchestration

Purpose: Task delegation to specialized agents, avoiding direct execution.

Core Principle: Alfred NEVER executes directly. All work via Task().

Delegation Syntax:

result = await Task(
    subagent_type="specialized_agent",
    prompt="Clear, specific task",
    context={"relevant": "data"}
)

Three Patterns:

Sequential (dependencies):

design = Task(subagent_type="api-designer", prompt="Design API")
code = Task(subagent_type="backend-expert", prompt="Implement", context={"design": design})

Parallel (independent):

results = await Promise.all([
    Task(subagent_type="backend-expert", prompt="Backend"),
    Task(subagent_type="frontend-expert", prompt="Frontend")
])

Conditional (analysis-based):

analysis = Task(subagent_type="debug-helper", prompt="Analyze")
if analysis.type == "security":
    Task(subagent_type="security-expert", prompt="Fix")

Agent Selection:

  • Simple (1 file): 1-2 agents sequential
  • Medium (3-5 files): 2-3 agents sequential
  • Complex (10+ files): 5+ agents mixed

Detailed Reference: Delegation Patterns Module


4. Token Optimization - Budget Management

Purpose: Efficient 200K token budget through strategic context management.

Budget Allocation:

Phase Budget Strategy
SPEC 30K Load requirements only, /clear after
TDD 180K Selective file loading
Docs 40K Result caching, templates
Total 250K Phase separation

Token Saving Strategies:

  1. Phase Separation: /clear between phases

    • After /moai:1-plan (saves 45-50K)
    • When context > 150K
    • After 50+ messages
  2. Selective Loading: Load only necessary files

  3. Context Optimization: 20-30K tokens target

  4. Model Selection: Sonnet (quality) | Haiku (speed/cost)

Monitoring: /context command, track budget, suggest /clear

Cost Savings: Haiku 70% cheaper → 60-70% total savings

Detailed Reference: Token Optimization Module


5. Progressive Disclosure - Content Architecture

Purpose: Three-tier knowledge delivery balancing value with depth.

Three Levels:

Level Time Content Tokens
Quick Reference 30s Core principles 1,000
Implementation 5min Workflows, examples 3,000
Advanced 10+min Deep dives, edge cases 5,000

SKILL.md Structure (≤500 lines):

## Quick Reference (30s)
## Implementation Guide (5min)
## Advanced Patterns (10+min)
## Works Well With

Module Architecture:

  • SKILL.md: Entry point, cross-references
  • modules/: Deep dives, unlimited
  • examples.md: Working samples
  • reference.md: External links

File Splitting (when >500 lines):

SKILL.md (500 lines)
├─ Quick (80-120)
├─ Implementation (180-250)
├─ Advanced (80-140)
└─ References (10-20)

Overflow → modules/[topic].md

Detailed Reference: Progressive Disclosure Module


6. Modular System - File Organization

Purpose: Scalable file structure enabling unlimited content.

Standard Structure:

.claude/skills/skill-name/
├── SKILL.md           # Core (≤500 lines)
├── modules/           # Extended (unlimited)
│   └── patterns.md
├── examples.md        # Working samples
├── reference.md       # External links
├── scripts/           # Utilities (optional)
└── templates/         # Templates (optional)

File Principles:

  1. SKILL.md: ≤500 lines, progressive disclosure, cross-references
  2. modules/: Topic-focused, no limits, self-contained
  3. examples.md: Copy-paste ready, commented
  4. reference.md: API docs, resources

Cross-Reference Syntax:

Details: [Module](modules/patterns.md)
Examples: [Examples](examples.md#auth)
External: [Reference](reference.md#api)

Discovery Flow: SKILL.md → Topic → modules/[topic].md → Deep dive

Detailed Reference: Modular System Module


Advanced Implementation (10+ minutes)

Cross-Module Integration

TRUST 5 + SPEC-First TDD:

spec = Task(subagent_type="workflow-spec", prompt="SPEC with TRUST 5")
impl = Task(subagent_type="workflow-tdd", prompt="≥85% coverage", 
            context={"spec": spec, "quality_gates": ["TRUST5"]})
validation = Task(subagent_type="core-quality", prompt="Validate TRUST 5",
                  context={"implementation": impl})

Token-Optimized Delegation:

spec = Task(subagent_type="workflow-spec", prompt="Generate SPEC")
execute_clear()  # Save 45-50K
results = await Promise.all([
    Task(subagent_type="backend-expert", prompt="Backend", context={"spec_id": spec.id}),
    Task(subagent_type="frontend-expert", prompt="Frontend", context={"spec_id": spec.id})
])
Task(subagent_type="workflow-docs", prompt="Docs", context={"results": results})

Progressive Agent Workflows:

quick = Task(subagent_type="debug-helper", prompt="Quick diagnosis")
if quick.complexity == "high":
    detailed = Task(subagent_type="debug-helper", prompt="Detailed analysis")
    if detailed.requires_expert:
        expert = Task(subagent_type="security-expert", prompt="Deep dive")

Quality Validation

Pre-Execution:

def validate_execution_requirements(task, context):
    return all([
        validate_security_clearance(task),
        validate_resource_availability(context),
        validate_quality_standards(task),
        validate_permission_compliance(task)
    ])

Post-Execution:

def validate_execution_results(result, task):
    validations = [
        validate_output_quality(result),
        validate_security_compliance(result),
        validate_test_coverage(result),
        validate_documentation_completeness(result)
    ]
    if not all(validations):
        raise QualityGateError("Quality gate failures")
    return True

Error Handling

Delegation Failure:

try:
    result = Task(subagent_type="backend-expert", prompt="Complex task")
except AgentExecutionError as e:
    analysis = Task(subagent_type="debug-helper", prompt=f"Analyze: {e}")
    if analysis.issue == "complexity":
        results = await Promise.all([
            Task(subagent_type="backend-expert", prompt="Subtask 1"),
            Task(subagent_type="backend-expert", prompt="Subtask 2")
        ])

Token Budget Exceeded:

if token_usage > 150_000:
    execute_clear()
    context = {"spec_id": current_spec.id, "phase_results": summarize(previous_results)}
    Task(subagent_type="next-agent", prompt="Continue", context=context)

Works Well With

Agents:

  • agent-factory - Create agents with foundation principles
  • skill-factory - Generate skills with modular architecture
  • core-quality - Automated TRUST 5 validation
  • workflow-spec - EARS format specification
  • workflow-tdd - RED-GREEN-REFACTOR execution
  • workflow-docs - Documentation with progressive disclosure

Skills:

  • moai-cc-claude-md - CLAUDE.md with foundation patterns
  • moai-cc-configuration - Config with TRUST 5
  • moai-cc-memory - Token optimization
  • moai-core-ask-user-questions - User clarification
  • moai-context7-integration - MCP integration

Commands:

  • /moai:1-plan - SPEC-First Phase 1
  • /moai:2-run - TDD Phase 2
  • /moai:3-sync - Documentation Phase 3
  • /moai:9-feedback - Continuous improvement
  • /clear - Token management

Foundation Modules (Extended Documentation):


Quick Decision Matrix

Scenario Primary Principle Supporting
New agent TRUST 5 + Delegation Token, modular
New skill Progressive + Modular TRUST 5, token
Workflow Delegation SPEC-First, token
Quality TRUST 5 SPEC-First
Budget Token Optimization Progressive, modular
Docs Progressive + Modular Token

Module Deep Dives:

Full Examples: examples.md External Resources: reference.md


Version: 1.0.0 Last Updated: 2025-11-25 Status: ✅ Active (496 lines, within 500-line limit)