| name | moai-integration-mcp |
| description | Universal MCP integration specialist combining Figma, Notion, Nano-Banana, and custom connectors with comprehensive orchestration patterns |
| version | 1.0.0 |
| category | integration |
| tags | mcp, figma, notion, nano-banana, connectors, orchestration |
| updated | Sun Nov 30 2025 00:00:00 GMT+0000 (Coordinated Universal Time) |
| status | active |
| author | MoAI-ADK Team |
MCP Integration Specialist
Quick Reference (30 seconds)
Universal MCP Integration - Comprehensive MCP (Model Context Protocol) specialist combining Figma design integration, Notion knowledge management, Nano-Banana AI services, and custom connector frameworks with advanced orchestration capabilities.
Core Capabilities:
- Figma Integration: Design system extraction, component generation, token synchronization
- Notion Integration: Database queries, page management, knowledge extraction
- Nano-Banana AI: Content generation, analysis, AI-powered workflows
- Universal Connectors: Extensible framework for custom service integrations
- Multi-Service Orchestration: Complex workflows across multiple platforms
- Enterprise Security: OAuth, credential management, secure authentication
When to Use:
- Integrating multiple external services via MCP
- Building automated design-to-code workflows
- Creating AI-powered content pipelines
- Implementing cross-platform data synchronization
- Developing custom MCP connectors
Implementation Guide (5 minutes)
Quick Start Workflow
Universal MCP Server Setup:
from moai_integration_mcp import UniversalMCPServer, ServiceOrchestrator
# Initialize universal MCP server
mcp_server = UniversalMCPServer("integration-server")
# Configure connectors
mcp_server.setup_connectors({
'figma': {'api_key': os.getenv('FIGMA_TOKEN')},
'notion': {'api_key': os.getenv('NOTION_TOKEN')},
'nano_banana': {'api_key': os.getenv('NANO_BANANA_TOKEN')}
})
# Register orchestration tools
orchestrator = ServiceOrchestrator(mcp_server)
orchestrator.register_workflows()
# Start server
mcp_server.start(port=3000)
Multi-Service Workflow:
# Design system automation
mcp-tools design_to_code --figma-file "abc123" --output ./src/components
# Knowledge extraction workflow
mcp-tools knowledge_extraction --notion-db "xyz789" --analyze "best_practices"
# AI-powered content generation
mcp-tools ai_workflow --input "./docs/" --output "./generated/" --model "claude-3-5-sonnet"
Core Components
- Server Architecture (
modules/server-architecture.md)
- Universal MCP server framework
- Multi-connector management
- Dynamic tool registration
- Configuration and initialization
- Integration Patterns (
modules/integration-patterns.md)
- Multi-service orchestration
- Workflow engine and templates
- Data transformation pipelines
- Advanced integration patterns
- Security & Authentication (
modules/security-authentication.md)
- OAuth 2.0 flows for all services
- Secure credential storage
- Token management and refresh
- Access control and permissions
- Error Handling (
modules/error-handling.md)
- Circuit breaker patterns
- Retry logic with backoff
- Fault tolerance mechanisms
- Monitoring and observability
Advanced Patterns (10+ minutes)
Multi-Service Orchestration
Design-to-Code Pipeline:
async def complete_design_workflow(figma_file_id: str, target_library: str = "shadcn"):
"""Complete design system to production code workflow."""
# Phase 1: Extract design data
design_data = await mcp_server.invoke_tool("extract_figma_components", {
"file_id": figma_file_id,
"include_tokens": True
})
# Phase 2: Process with AI
component_specs = []
for component in design_data["components"]:
spec = await mcp_server.invoke_tool("analyze_with_ai", {
"content": json.dumps(component),
"analysis_type": "component_specification"
})
component_specs.append(spec)
# Phase 3: Generate code
generated_components = []
for spec in component_specs:
code = await mcp_server.invoke_tool("generate_ai_content", {
"prompt": f"Generate React component for: {spec['analysis']}",
"max_tokens": 3000
})
generated_components.append(code)
# Phase 4: Create documentation
documentation = await mcp_server.invoke_tool("generate_ai_content", {
"prompt": f"Create documentation for components: {json.dumps(component_specs)}",
"max_tokens": 4000
})
return {
"components": generated_components,
"documentation": documentation,
"design_tokens": design_data["design_tokens"],
"workflow_status": "completed"
}
Knowledge Base Automation:
async def knowledge_base_workflow(notion_database: str, analysis_goals: list):
"""Automated knowledge extraction and organization workflow."""
# Extract content from Notion
content = await mcp_server.invoke_tool("query_notion_database", {
"database_id": notion_database,
"query": {"filter": {"property": "Status", "select": {"equals": "Published"}}}
})
# Analyze with AI for each goal
analyses = {}
for goal in analysis_goals:
analysis = await mcp_server.invoke_tool("analyze_with_ai", {
"content": json.dumps(content["results"]),
"analysis_type": goal
})
analyses[goal] = analysis
# Structure knowledge base
structured_kb = await mcp_server.invoke_tool("generate_ai_content", {
"prompt": f"Create structured knowledge base from analyses: {json.dumps(analyses)}",
"max_tokens": 5000
})
return {
"raw_content": content,
"analyses": analyses,
"structured_knowledge": structured_kb,
"source_count": len(content["results"])
}
Custom Connector Development
Extensible Connector Framework:
class CustomConnector:
def __init__(self, service_config: dict):
self.config = service_config
self.client = None
async def initialize(self):
"""Initialize custom service client."""
self.client = CustomServiceClient(self.config)
def register_tools(self, server):
"""Register connector-specific tools."""
@server.tool()
async def custom_service_operation(
operation_type: str,
parameters: dict = {}
) -> dict:
"""Execute operation on custom service."""
try:
result = await self.client.execute_operation(
operation_type,
parameters
)
return {
"status": "success",
"result": result,
"operation": operation_type
}
except Exception as e:
return {
"status": "error",
"error": str(e),
"operation": operation_type
}
# Register custom connector
mcp_server.register_connector('custom_service', CustomConnector(config))
Works Well With
Complementary Skills:
moai-domain-frontend- Frontend component generation and integrationmoai-domain-backend- Backend API integration patternsmoai-docs-generation- Automated documentation workflowsmoai-foundation-claude- Claude Code integration patterns
External Services:
- Figma (design systems, component extraction)
- Notion (knowledge management, documentation)
- Nano-Banana (AI content generation)
- Custom APIs and web services
- Database systems and storage
Integration Platforms:
- FastMCP server framework
- OAuth 2.0 providers
- REST APIs and GraphQL
- Message queues and event systems
- Cloud storage services
Usage Examples
Design System Integration
# Extract and sync design tokens
tokens = await mcp_server.invoke_tool("sync_figma_tokens", {
"file_id": "design-system-file",
"output_format": "typescript",
"include_variants": True
})
# Generate component library
components = await mcp_server.invoke_tool("extract_figma_components", {
"file_id": "component-library",
"target_framework": "react",
"include_stories": True
})
Knowledge Base Management
# Extract and analyze knowledge
analysis = await mcp_server.invoke_tool("knowledge_extraction_workflow", {
"notion_database_id": "knowledge-base",
"analysis_goals": ["best_practices", "patterns", "action_items"],
"output_format": "structured_json"
})
# Create new documentation
doc_page = await mcp_server.invoke_tool("create_notion_page", {
"database_id": "documentation-db",
"properties": {
"Title": {"title": [{"text": {"content": "Best Practices Guide"}}]},
"Category": {"select": {"name": "Guidelines"}}
},
"content": analysis["structured_knowledge"]
})
AI-Powered Workflows
# Generate content with AI
ai_content = await mcp_server.invoke_tool("generate_ai_content", {
"prompt": "Create comprehensive API documentation",
"model": "claude-3-5-sonnet",
"max_tokens": 4000,
"temperature": 0.7
})
# Analyze and summarize
summary = await mcp_server.invoke_tool("analyze_with_ai", {
"content": ai_content["content"],
"analysis_type": "summary",
"include_key_points": True
})
Technology Stack
Core Framework:
- FastMCP (Python MCP server framework)
- AsyncIO for concurrent operations
- Pydantic for data validation
- HTTPX for HTTP client operations
Service Integrations:
- Figma API (design systems)
- Notion API (knowledge management)
- Nano-Banana API (AI services)
- Custom REST/GraphQL APIs
Security & Authentication:
- OAuth 2.0 implementation
- Cryptography for encryption
- JWT token management
- Secure credential storage
Error Handling & Reliability:
- Circuit breaker patterns
- Retry mechanisms with backoff
- Comprehensive error classification
- Monitoring and observability
Development Tools:
- Type hints and validation
- Comprehensive logging
- Performance monitoring
- Debugging and profiling tools
For detailed implementation patterns, connector development, and advanced workflows, see the modules/ directory.