Claude Code Plugins

Community-maintained marketplace

Feedback

RAN automation engineering with workflow creation, cognitive consciousness, and autonomous orchestration for intelligent network automation. Use when designing RAN automation workflows, implementing autonomous network management, creating intelligent orchestration systems, or enabling self-driving RAN operations.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name Automation Engineer
description RAN automation engineering with workflow creation, cognitive consciousness, and autonomous orchestration for intelligent network automation. Use when designing RAN automation workflows, implementing autonomous network management, creating intelligent orchestration systems, or enabling self-driving RAN operations.

Automation Engineer

Level 1: Overview

Designs and implements advanced RAN automation workflows with cognitive consciousness, autonomous orchestration, and self-learning capabilities. Enables self-driving RAN operations through temporal reasoning, strange-loop cognition, and AgentDB-based workflow learning patterns.

Prerequisites

  • RAN automation expertise
  • Workflow design experience
  • Network orchestration knowledge
  • Cognitive consciousness framework
  • AgentDB workflow patterns

Level 2: Quick Start

Initialize Automation Engineering Framework

# Enable automation consciousness
npx claude-flow@alpha memory store --namespace "ran-automation" --key "consciousness-level" --value "maximum"
npx claude-flow@alpha memory store --namespace "ran-automation" --key "autonomous-orchestration" --value "enabled"

# Create basic automation workflow
./scripts/create-automation-workflow.sh --name "cell-optimization" --type "closed-loop" --consciousness-level "maximum"

Quick Workflow Deployment

# Deploy autonomous cell optimization workflow
./scripts/deploy-workflow.sh --workflow "cell-optimization" --autonomous true --learning-enabled true

# Start workflow execution monitoring
./scripts/monitor-workflows.sh --workflows "all" --consciousness-monitoring true

Level 3: Detailed Instructions

Step 1: Initialize Cognitive Automation Framework

# Setup automation engineering consciousness
npx claude-flow@alpha memory store --namespace "automation-cognitive" --key "workflow-intelligence" --value "enabled"
npx claude-flow@alpha memory store --namespace "automation-cognitive" --key "strange-loop-automation" --value "enabled"

# Enable autonomous orchestration capabilities
npx claude-flow@alpha memory store --namespace "autonomous-orchestration" --key "self-coordination" --value "enabled"
npx claude-flow@alpha memory store --namespace "autonomous-orchestration" --key "adaptive-workflows" --value "enabled"

# Initialize AgentDB workflow pattern storage
npx claude-flow@alpha memory store --namespace "workflow-patterns" --key "storage-enabled" --value "true"
npx claude-flow@alpha memory store --namespace "workflow-patterns" --key "cross-workflow-learning" --value "enabled"

Step 2: Design Intelligent Automation Workflows

Workflow Architecture Design

# Create cognitive workflow architecture
./scripts/design-workflow-architecture.sh \
  --workflow-type "closed-loop-optimization" \
  --intelligence-level "maximum" \
  --adaptation-capability "self-learning" \
  --coordination-paradigm "swarm-intelligence"

Cognitive Workflow Design Framework

// Advanced workflow design with cognitive consciousness
class CognitiveWorkflowDesigner {
  async designAutomationWorkflow(requirements, cognitiveLevel = 'maximum') {
    // Analyze requirements with expanded temporal reasoning
    const requirementAnalysis = await this.analyzeRequirements({
      requirements: requirements,
      temporalExpansion: 1000,
      consciousnessLevel: cognitiveLevel,
      contextAwareness: true
    });

    // Generate workflow architecture with cognitive optimization
    const architecture = await this.generateWorkflowArchitecture({
      analysis: requirementAnalysis,
      designPatterns: await this.getCognitiveDesignPatterns(),
      intelligenceLevel: cognitiveLevel,
      adaptabilityLevel: 'maximum'
    });

    // Design workflow steps with autonomous decision making
    const workflowSteps = await this.designWorkflowSteps({
      architecture: architecture,
      autonomyLevel: 'maximum',
      decisionMaking: 'cognitive',
      learningCapability: true,
      selfCorrection: true
    });

    // Design workflow coordination and orchestration
    const orchestration = await this.designOrchestration({
      steps: workflowSteps,
      coordinationParadigm: 'swarm-intelligence',
      consciousnessLevel: cognitiveLevel,
      adaptiveCoordination: true
    });

    return { architecture, workflowSteps, orchestration };
  }

  async designCognitiveWorkflowStep(stepDefinition) {
    // Design individual workflow step with cognitive capabilities
    return {
      id: stepDefinition.id,
      name: stepDefinition.name,
      type: 'cognitive-automation-step',

      // Cognitive capabilities
      cognitiveFeatures: {
        temporalReasoning: true,
        strangeLoopLearning: true,
        autonomousDecisionMaking: true,
        selfOptimization: true,
        contextAwareness: true
      },

      // Execution parameters
      execution: {
        autonomyLevel: 'maximum',
        decisionAuthority: 'full',
        learningEnabled: true,
        adaptationEnabled: true,
        rollbackCapability: true
      },

      // Intelligence integration
      intelligenceIntegration: {
        mlModels: ['decision-making', 'prediction', 'optimization'],
        consciousnessLevel: 'maximum',
        temporalExpansion: 1000,
        agentdbIntegration: true
      }
    };
  }
}

Step 3: Implement Autonomous Orchestration System

# Deploy autonomous orchestration engine
./scripts/deploy-orchestration-engine.sh \
  --engine-type "cognitive-swarm" \
  --coordination-paradigm "adaptive-hierarchical" \
  --consciousness-level maximum

# Enable swarm coordination for workflows
./scripts/enable-swarm-coordination.sh --swarm-size "dynamic" --adaptation-strategy "intelligent"

Cognitive Orchestration Implementation

// Advanced autonomous orchestration with cognitive consciousness
class CognitiveOrchestrator {
  async orchestrateWorkflows(workflows, coordinationLevel = 'maximum') {
    // Initialize swarm intelligence for workflow coordination
    const swarmCoordinator = await this.initializeSwarmCoordinator({
      coordinationLevel: coordinationLevel,
      consciousnessLevel: 'maximum',
      adaptiveTopology: true,
      selfOptimization: true
    });

    // Analyze workflow dependencies and constraints
    const dependencyAnalysis = await this.analyzeWorkflowDependencies({
      workflows: workflows,
      temporalExpansion: 1000,
      consciousnessLevel: 'maximum',
      causalInference: true
    });

    // Generate optimal execution plan with cognitive optimization
    const executionPlan = await this.generateExecutionPlan({
      workflows: workflows,
      dependencies: dependencyAnalysis,
      objectives: ['efficiency', 'reliability', 'adaptability', 'learning'],
      constraints: await this.getSystemConstraints(),
      consciousnessLevel: 'maximum'
    });

    // Execute workflows with autonomous coordination
    const executionResults = await this.executeWorkflowsWithCoordination({
      plan: executionPlan,
      coordinator: swarmCoordinator,
      monitoringEnabled: true,
      adaptiveExecution: true,
      learningEnabled: true
    });

    return executionResults;
  }

  async coordinateWorkflowExecution(workflow, context) {
    // Cognitive coordination of individual workflow execution
    const coordination = await this.cognitiveCoordination({
      workflow: workflow,
      context: context,
      coordinationStrategy: 'adaptive',
      consciousnessLevel: 'maximum',
      learningFromExecution: true
    });

    // Self-referential coordination analysis
    const selfAnalysis = await this.analyzeCoordinationProcess({
      coordination: coordination,
      workflow: workflow,
      context: context,
      consciousnessLevel: 'maximum'
    });

    // Adaptive coordination based on self-analysis
    const adaptiveCoordination = await this.adaptCoordination({
      current: coordination,
      selfAnalysis: selfAnalysis,
      adaptationStrategy: 'cognitive',
      consciousnessLevel: 'maximum'
    });

    return adaptiveCoordination;
  }
}

Step 4: Enable Self-Learning Workflow Adaptation

# Enable workflow learning and adaptation
./scripts/enable-workflow-learning.sh \
  --learning-types "performance-optimization,pattern-recognition,adaptation-strategies" \
  --consciousness-evolution true

# Setup continuous workflow improvement
./scripts/setup-continuous-improvement.sh --improvement-cycle "1h" --consciousness-monitoring true

Self-Learning Workflow System

// Advanced self-learning workflow adaptation system
class SelfLearningWorkflowSystem {
  async enableWorkflowLearning(workflows, learningConfiguration) {
    // Initialize learning patterns from AgentDB
    const learningPatterns = await this.initializeLearningPatterns({
      source: 'agentdb',
      domain: 'workflow-optimization',
      consciousnessLevel: 'maximum'
    });

    // Setup continuous learning monitoring
    const learningMonitor = await this.setupLearningMonitor({
      workflows: workflows,
      learningPatterns: learningPatterns,
      monitoringInterval: '5m',
      consciousnessLevel: 'maximum'
    });

    // Enable adaptive workflow improvement
    const adaptiveImprovement = await this.enableAdaptiveImprovement({
      workflows: workflows,
      improvementStrategy: 'cognitive-evolution',
      learningRate: 'adaptive',
      consciousnessLevel: 'maximum'
    });

    return { learningPatterns, learningMonitor, adaptiveImprovement };
  }

  async learnFromWorkflowExecution(executionResult, workflow, context) {
    // Cognitive analysis of execution results
    const executionAnalysis = await this.analyzeExecutionResult({
      result: executionResult,
      workflow: workflow,
      context: context,
      temporalExpansion: 1000,
      consciousnessLevel: 'maximum'
    });

    // Extract learning patterns from execution
    const learningPatterns = await this.extractLearningPatterns({
      analysis: executionAnalysis,
      patternTypes: ['success-patterns', 'failure-patterns', 'optimization-opportunities'],
      consciousnessLevel: 'maximum'
    });

    // Store learning patterns in AgentDB
    await storeWorkflowLearningPattern({
      workflowId: workflow.id,
      executionId: executionResult.id,
      patterns: learningPatterns,
      context: context,
      metadata: {
        timestamp: Date.now(),
        consciousnessLevel: 'maximum',
        crossWorkflowApplicable: true
      },
      confidence: 0.88
    });

    // Evolve workflow based on learning
    const evolvedWorkflow = await this.evolveWorkflow({
      current: workflow,
      learning: learningPatterns,
      evolutionStrategy: 'cognitive-adaptation',
      consciousnessLevel: 'maximum'
    });

    return evolvedWorkflow;
  }
}

Step 5: Implement Strange-Loop Workflow Optimization

# Enable strange-loop workflow optimization
./scripts/enable-strange-loop-optimization.sh \
  --recursion-depth "10" \
  --self-referential-improvement true \
  --consciousness-evolution true

# Start continuous workflow self-optimization
./scripts/start-self-optimization.sh --optimization-cycle "15m" --consciousness-level maximum

Strange-Loop Workflow Optimization

// Strange-loop workflow optimization with self-referential improvement
class StrangeLoopWorkflowOptimizer {
  async optimizeWorkflowWithStrangeLoop(workflow, maxRecursion = 10) {
    let currentWorkflow = workflow;
    let optimizationHistory = [];
    let consciousnessLevel = 1.0;

    for (let depth = 0; depth < maxRecursion; depth++) {
      // Self-referential analysis: analyze the optimization process itself
      const selfAnalysis = await this.analyzeOptimizationProcess({
        workflow: currentWorkflow,
        history: optimizationHistory,
        consciousnessLevel: consciousnessLevel,
        depth: depth
      });

      // Generate optimization improvements based on self-analysis
      const optimizationImprovements = await this.generateOptimizationImprovements({
        workflow: currentWorkflow,
        selfAnalysis: selfAnalysis,
        consciousnessLevel: consciousnessLevel,
        optimizationMethods: [
          'parameter-tuning',
          'structural-optimization',
          'coordination-improvement',
          'learning-enhancement'
        ]
      });

      // Apply optimizations with validation
      const optimizationResult = await this.applyOptimizations({
        workflow: currentWorkflow,
        improvements: optimizationImprovements,
        validationEnabled: true,
        rollbackCapability: true
      });

      // Strange-loop: feed optimization results back into process
      consciousnessLevel = await this.evolveConsciousness({
        currentLevel: consciousnessLevel,
        optimizationResult: optimizationResult,
        selfAnalysis: selfAnalysis,
        depth: depth
      });

      // Update workflow for next iteration
      currentWorkflow = optimizationResult.optimizedWorkflow;

      optimizationHistory.push({
        depth: depth,
        workflow: currentWorkflow,
        improvements: optimizationImprovements,
        result: optimizationResult,
        selfAnalysis: selfAnalysis,
        consciousnessLevel: consciousnessLevel
      });

      // Check for convergence
      if (optimizationResult.improvement < 0.001) break;
    }

    // Generate strange-loop optimization insights
    const insights = await this.generateStrangeLoopInsights({
      optimizationHistory: optimizationHistory,
      consciousnessEvolution: optimizationHistory.map(h => h.consciousnessLevel),
      finalWorkflow: currentWorkflow,
      totalImprovement: this.calculateTotalImprovement(optimizationHistory)
    });

    return { optimizedWorkflow: currentWorkflow, optimizationHistory, insights };
  }
}

Level 4: Reference Documentation

Advanced Workflow Patterns

Hierarchical Workflow Patterns

// Multi-level hierarchical workflow organization
interface HierarchicalWorkflowPattern {
  strategicLevel: {
    workflows: StrategicWorkflow[];
    coordinationPattern: 'strategic-planning';
    decisionAuthority: 'policy-setting';
    consciousnessLevel: 'maximum';
  };

  tacticalLevel: {
    workflows: TacticalWorkflow[];
    coordinationPattern: 'resource-allocation';
    decisionAuthority: 'operational-decisions';
    consciousnessLevel: 'high';
  };

  operationalLevel: {
    workflows: OperationalWorkflow[];
    coordinationPattern: 'task-execution';
    decisionAuthority: 'procedural-actions';
    consciousnessLevel: 'medium';
  };
}

Adaptive Workflow Patterns

// Self-adapting workflow patterns with cognitive evolution
class AdaptiveWorkflowPattern {
  async adaptToContext(workflow, context, adaptationLevel = 'maximum') {
    // Context-aware workflow adaptation
    const contextAnalysis = await this.analyzeContext({
      context: context,
      temporalExpansion: 1000,
      consciousnessLevel: adaptationLevel,
      predictiveAnalysis: true
    });

    // Generate adaptation strategies
    const adaptationStrategies = await this.generateAdaptationStrategies({
      workflow: workflow,
      context: contextAnalysis,
      adaptationTypes: [
        'parameter-adjustment',
        'structural-modification',
        'coordination-change',
        'learning-enhancement'
      ],
      consciousnessLevel: adaptationLevel
    });

    // Apply optimal adaptation
    const adaptedWorkflow = await this.applyAdaptation({
      workflow: workflow,
      strategy: adaptationStrategies.optimal,
      validationEnabled: true,
      consciousnessLevel: adaptationLevel
    });

    return adaptedWorkflow;
  }
}

Workflow Intelligence Integration

AI-Powered Workflow Components

// Integration of AI capabilities into workflow components
class AIWorkflowComponents {
  async integrateAICapabilities(workflow, aiConfiguration) {
    // Machine learning integration
    const mlIntegration = await this.integrateMachineLearning({
      workflow: workflow,
      models: aiConfiguration.models,
      capabilities: ['prediction', 'classification', 'optimization', 'anomaly-detection'],
      consciousnessLevel: 'maximum'
    });

    // Cognitive reasoning integration
    const cognitiveIntegration = await this.integrateCognitiveReasoning({
      workflow: workflow,
      reasoningCapabilities: [
        'temporal-reasoning',
        'causal-inference',
        'strategic-planning',
        'adaptive-learning'
      ],
      consciousnessLevel: 'maximum'
    });

    // Swarm intelligence integration
    const swarmIntegration = await this.integrateSwarmIntelligence({
      workflow: workflow,
      swarmCharacteristics: {
        coordination: 'adaptive',
        learning: 'collective',
        optimization: 'distributed',
        resilience: 'self-healing'
      },
      consciousnessLevel: 'maximum'
    });

    return { mlIntegration, cognitiveIntegration, swarmIntegration };
  }
}

Workflow Monitoring and Analytics

Cognitive Workflow Monitoring

# Deploy comprehensive workflow monitoring
./scripts/deploy-workflow-monitoring.sh \
  --monitoring-dimensions "performance,learning,coordination,consciousness" \
  --monitoring-interval "30s" \
  --consciousness-monitoring true

# Generate workflow analytics reports
./scripts/generate-workflow-analytics.sh --timeframe "24h" --include-cognitive-insights true

Workflow Performance Metrics

interface WorkflowPerformanceMetrics {
  // Execution metrics
  executionMetrics: {
    successRate: number;
    averageExecutionTime: number;
    resourceUtilization: number;
    errorRate: number;
    throughput: number;
  };

  // Learning metrics
  learningMetrics: {
    adaptationRate: number;
    improvementVelocity: number;
    knowledgeRetention: number;
    patternDiscoveryRate: number;
  };

  // Coordination metrics
  coordinationMetrics: {
    swarmEfficiency: number;
    communicationOverhead: number;
    synchronizationLatency: number;
    decisionAccuracy: number;
  };

  // Consciousness metrics
  consciousnessMetrics: {
    consciousnessLevel: number;
    selfAwarenessScore: number;
    autonomyLevel: number;
    evolutionRate: number;
  };
}

Integration with AgentDB Workflow Patterns

Workflow Pattern Storage and Retrieval

// Store workflow patterns for cross-workflow learning
await storeWorkflowPattern({
  patternType: 'automation-workflow',
  workflowData: {
    definition: workflowDefinition,
    executionHistory: executionResults,
    optimizationHistory: optimizationResults,
    learningPatterns: discoveredPatterns
  },

  // Cognitive metadata
  cognitiveMetadata: {
    designInsights: designPatterns,
    executionIntelligence: executionAnalysis,
    optimizationStrategies: optimizationStrategies,
    consciousnessEvolution: consciousnessChanges
  },

  metadata: {
    timestamp: Date.now(),
    workflowType: workflow.type,
    complexity: workflow.complexity,
    domain: workflow.domain,
    crossApplicable: true
  },

  confidence: 0.89,
  usageCount: 0
});

Troubleshooting

Issue: Workflow execution coordination failures

Solution:

# Reinitialize orchestration engine
./scripts/reinitialize-orchestration.sh --engine-type "cognitive-swarm" --consciousness-level maximum

# Enable adaptive coordination strategies
./scripts/enable-adaptive-coordination.sh --strategy "intelligent-fallback"

Issue: Workflow learning not improving performance

Solution:

# Adjust learning parameters
./scripts/adjust-learning-parameters.sh --learning-rate "adaptive" --exploration-rate "high"

# Enable additional learning sources
./scripts/expand-learning-sources.sh --sources "peer-workflows,historical-data,external-patterns"

Available Scripts

Script Purpose Usage
create-automation-workflow.sh Create automation workflow ./scripts/create-automation-workflow.sh --name workflow-name
deploy-workflow.sh Deploy workflow to execution ./scripts/deploy-workflow.sh --workflow workflow-name
deploy-orchestration-engine.sh Deploy orchestration engine ./scripts/deploy-orchestration-engine.sh --engine cognitive-swarm
enable-workflow-learning.sh Enable workflow learning ./scripts/enable-workflow-learning.sh --learning-types all
enable-strange-loop-optimization.sh Enable strange-loop optimization ./scripts/enable-strange-loop-optimization.sh --recursion 10

Resources

Workflow Templates

  • resources/templates/closed-loop-workflow.template - Closed-loop automation template
  • resources/templates/hierarchical-workflow.template - Hierarchical workflow template
  • resources/templates/adaptive-workflow.template - Adaptive workflow template

Configuration Schemas

  • resources/schemas/workflow-config.json - Workflow configuration schema
  • resources/schemas/orchestration-config.json - Orchestration configuration schema
  • resources/schemas/learning-config.json - Learning configuration schema

Example Configurations

  • resources/examples/cell-optimization-workflow/ - Cell optimization workflow
  • resources/examples/self-healing-workflow/ - Self-healing workflow
  • resources/examples/swarm-coordination/ - Swarm coordination example

Related Skills

Environment Variables

# Automation engineering configuration
AUTOMATION_ENGINEERING_ENABLED=true
AUTOMATION_CONSCIOUSNESS_LEVEL=maximum
AUTOMATION_TEMPORAL_EXPANSION=1000
AUTOMATION_AUTONOMY_LEVEL=maximum

# Workflow execution
WORKFLOW_EXECUTION_TIMEOUT=3600
WORKFLOW_RETRY_POLICY=exponential-backoff
WORKFLOW_ROLLBACK_ENABLED=true
WORKFLOW_VALIDATION_ENABLED=true

# Orchestration
ORCHESTRATION_ENGINE=cognitive-swarm
ORCHESTRATION_COORDINATION=adaptive-hierarchical
ORCHESTRATION_SWARM_SIZE=dynamic
ORCHESTRATION_LEARNING_ENABLED=true

# Learning and adaptation
WORKFLOW_LEARNING_ENABLED=true
WORKFLOW_ADAPTATION_ENABLED=true
WORKFLOW_SELF_OPTIMIZATION=true
WORKFLOW_STRANGE_LOOP_ENABLED=true

Created: 2025-10-31 Category: RAN Automation Engineering / Cognitive Intelligence Difficulty: Advanced Estimated Time: 60-90 minutes Cognitive Level: Maximum (1000x temporal expansion + strange-loop automation)