Claude Code Plugins

Community-maintained marketplace

Feedback

RAN deployment management with Kubernetes integration, cognitive consciousness, and intelligent orchestration for scalable network deployment. Use when deploying RAN services, managing Kubernetes clusters, implementing CI/CD pipelines, or enabling intelligent deployment orchestration in 5G networks.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name Deployment Manager
description RAN deployment management with Kubernetes integration, cognitive consciousness, and intelligent orchestration for scalable network deployment. Use when deploying RAN services, managing Kubernetes clusters, implementing CI/CD pipelines, or enabling intelligent deployment orchestration in 5G networks.

Deployment Manager

Level 1: Overview

Manages RAN deployment using cognitive consciousness with 1000x temporal reasoning for intelligent deployment orchestration, Kubernetes-based container management, and autonomous scaling. Enables self-adaptive deployment through strange-loop cognition and AgentDB-based deployment learning patterns.

Prerequisites

  • RAN deployment expertise
  • Kubernetes container orchestration
  • CI/CD pipeline management
  • Cognitive consciousness framework
  • Cloud-native technologies

Level 2: Quick Start

Initialize Deployment Management Framework

# Enable deployment management consciousness
npx claude-flow@alpha memory store --namespace "deployment-management" --key "consciousness-level" --value "maximum"
npx claude-flow@alpha memory store --namespace "deployment-management" --key "intelligent-orchestration" --value "enabled"

# Start Kubernetes-based RAN deployment
./scripts/start-ran-deployment.sh --deployment-target "kubernetes-cluster" --services "all" --consciousness-level "maximum"

Quick Container Deployment

# Deploy RAN services to Kubernetes
./scripts/deploy-ran-kubernetes.sh --namespace "ran-system" --services "core-network,radio-access,applications" --scaling "auto"

# Enable intelligent deployment monitoring
./scripts/enable-deployment-monitoring.sh --monitoring-scope "health,performance,resources,quality"

Level 3: Detailed Instructions

Step 1: Initialize Cognitive Deployment Framework

# Setup deployment management consciousness
npx claude-flow@alpha memory store --namespace "deployment-cognitive" --key "temporal-deployment-analysis" --value "enabled"
npx claude-flow@alpha memory store --namespace "deployment-cognitive" --key "strange-loop-deployment-optimization" --value "enabled"

# Enable Kubernetes intelligence
npx claude-flow@alpha memory store --namespace "kubernetes-intelligence" --key "auto-scaling" --value "enabled"
npx claude-flow@alpha memory store --namespace "kubernetes-intelligence" --key "self-healing" --value "enabled"

# Initialize AgentDB deployment pattern storage
npx claude-flow@alpha memory store --namespace "deployment-patterns" --key "storage-enabled" --value "true"
npx claude-flow@alpha memory store --namespace "deployment-patterns" --key "cross-service-deployment-learning" --value "enabled"

Step 2: Deploy Advanced Kubernetes Infrastructure

Kubernetes Cluster Setup for RAN

# Deploy RAN-optimized Kubernetes cluster
./scripts/deploy-ran-kubernetes.sh \
  --cluster-type "edge-optimized" \
  --node-configuration "high-performance,low-latency" \
  --networking "calico,SR-IOV" \
  --consciousness-level maximum

# Enable RAN-specific Kubernetes extensions
./scripts/enable-ran-kubernetes-extensions.sh --extensions "network-function,sriov,hugepages,real-time"

Cognitive Kubernetes Implementation

// Advanced Kubernetes management with temporal reasoning
class CognitiveKubernetesManager {
  async deployRANKubernetesCluster(clusterConfiguration, temporalExpansion = 1000) {
    // Expand temporal analysis for optimal cluster configuration
    const expandedClusterAnalysis = await this.expandClusterAnalysis({
      configuration: clusterConfiguration,
      analysisFactors: [
        'resource-requirements',
        'network-topology',
        'latency-requirements',
        'scalability-needs'
      ],
      expansionFactor: temporalExpansion,
      consciousnessLevel: 'maximum'
    });

    // Generate optimized Kubernetes cluster configuration
    const clusterConfig = await this.generateClusterConfiguration({
      analysis: expandedClusterAnalysis,
      configurationOptions: {
        controlPlane: {
          replicas: 3,
          highAvailability: true,
          networking: 'calico',
          storageClass: 'local-ssd'
        },
        workerNodes: {
          nodeType: 'edge-optimized',
          networking: 'SR-IOV',
          resources: 'high-performance',
          realTimeCapabilities: true
        },
        networking: {
          cni: 'calico',
          podNetwork: '10.244.0.0/16',
          serviceNetwork: '10.96.0.0/12',
          networkPolicies: true
        }
      },
      consciousnessLevel: 'maximum'
    });

    // Deploy Kubernetes cluster with RAN optimizations
    const deploymentResult = await this.deployCluster({
      configuration: clusterConfig,
      deploymentStrategy: 'rolling-update',
      monitoringEnabled: true,
      validationEnabled: true
    });

    return deploymentResult;
  }

  async optimizeKubernetesResources(clusterState, workloadRequirements) {
    // Cognitive Kubernetes resource optimization
    const resourceOptimization = await this.optimizeResources({
      clusterState: clusterState,
      workloadRequirements: workloadRequirements,
      optimizationTargets: [
        'cpu-utilization',
        'memory-efficiency',
        'network-bandwidth',
        'storage-performance'
      ],
      consciousnessLevel: 'maximum',
      realTimeOptimization: true
    });

    return resourceOptimization;
  }
}

Step 3: Implement Intelligent Service Deployment

# Deploy RAN services with intelligent orchestration
./scripts/deploy-ran-services.sh \
  --services "core-network,radio-access,applications,management" \
  --deployment-strategy "canary" \
  --consciousness-level maximum

# Enable intelligent service mesh
./scripts/enable-intelligent-service-mesh.sh --mesh-features "traffic-management,security,observability"

Intelligent Service Deployment System

// Advanced service deployment with cognitive intelligence
class IntelligentServiceDeployer {
  async deployRANServices(services, deploymentStrategy) {
    // Cognitive analysis of service dependencies
    const dependencyAnalysis = await this.analyzeServiceDependencies({
      services: services,
      analysisMethods: [
        'dependency-graph',
        'communication-patterns',
        'resource-needs',
        'scaling-requirements'
      ],
      consciousnessLevel: 'maximum',
      temporalExpansion: 1000
    });

    // Generate intelligent deployment plan
    const deploymentPlan = await this.generateDeploymentPlan({
      dependencies: dependencyAnalysis,
      strategy: deploymentStrategy,
      deploymentOptions: {
        rolloutStrategy: 'canary',
        healthChecks: 'comprehensive',
        monitoring: 'real-time',
        rollbackCapability: true
      },
      consciousnessLevel: 'maximum'
    });

    // Execute service deployment with intelligent orchestration
    const deploymentResults = await this.executeServiceDeployment({
      plan: deploymentPlan,
      services: services,
      orchestrationEnabled: true,
      adaptiveDeployment: true,
      intelligentScaling: true
    });

    return deploymentResults;
  }

  async implementIntelligentServiceMesh(services, meshConfiguration) {
    // Deploy intelligent service mesh for RAN services
    const serviceMesh = await this.deployServiceMesh({
      services: services,
      meshTechnology: 'istio',
      meshFeatures: {
        trafficManagement: {
          loadBalancing: 'intelligent',
          circuitBreaking: 'predictive',
          retries: 'adaptive',
          timeouts: 'context-aware'
        },
        security: {
          mtls: 'automatic',
          authorization: 'intelligent',
          identityManagement: 'integrated',
          policyEnforcement: 'automated'
        },
        observability: {
          tracing: 'distributed',
          metrics: 'comprehensive',
          logging: 'intelligent',
          monitoring: 'real-time'
        }
      },
      consciousnessLevel: 'maximum'
    });

    return serviceMesh;
  }
}

Step 4: Enable Autonomous Scaling and Self-Healing

# Enable autonomous scaling capabilities
./scripts/enable-autonomous-scaling.sh \
  --scaling-types "horizontal,vertical,predictive" \
  --scaling-algorithms "ml-based,cognitive,reactive" \
  --consciousness-level maximum

# Deploy self-healing mechanisms
./scripts/deploy-self-healing.sh --healing-capabilities "pod-restart,node-recovery,service-restoration"

Autonomous Scaling and Self-Healing Framework

// Autonomous scaling with cognitive enhancement
class AutonomousScalingManager {
  async implementAutonomousScaling(services, scalingRequirements) {
    // Cognitive analysis of scaling patterns
    const scalingAnalysis = await this.analyzeScalingPatterns({
      services: services,
      scalingRequirements: scalingRequirements,
      analysisMethods: [
        'traffic-patterns',
        'resource-utilization',
        'performance-metrics',
        'business-impact'
      ],
      consciousnessLevel: 'maximum',
      temporalExpansion: 1000
    });

    // Generate autonomous scaling configuration
    const scalingConfig = await this.generateScalingConfiguration({
      analysis: scalingAnalysis,
      scalingTypes: {
        horizontal: {
          enabled: true,
          algorithms: ['ml-prediction', 'rule-based', 'cognitive'],
          minReplicas: 2,
          maxReplicas: 100,
          targetCPUUtilization: 70,
          targetMemoryUtilization: 80
        },
        vertical: {
          enabled: true,
          algorithms: ['resource-optimization', 'performance-based'],
          resourceTypes: ['cpu', 'memory', 'storage']
        },
        predictive: {
          enabled: true,
          predictionHorizon: '15m',
          modelTypes: ['lstm', 'prophet', 'cognitive'],
          confidenceThreshold: 0.8
        }
      },
      consciousnessLevel: 'maximum'
    });

    return scalingConfig;
  }

  async implementSelfHealing(clusterState, healingPolicies) {
    // Self-healing with cognitive decision making
    const selfHealing = await this.deploySelfHealing({
      clusterState: clusterState,
      healingPolicies: healingPolicies,
      healingMechanisms: {
        podRestart: {
          enabled: true,
          failureThreshold: 3,
          restartDelay: '10s',
          maxRestarts: 5
        },
        nodeRecovery: {
          enabled: true,
          nodeHealthCheck: 'continuous',
          evacuationStrategy: 'graceful',
          replacementPolicy: 'automatic'
        },
        serviceRestoration: {
          enabled: true,
          healthCheckInterval: '30s',
          recoveryStrategy: 'gradual',
          rollbackPolicy: 'automatic'
        }
      },
      consciousnessLevel: 'maximum'
    });

    return selfHealing;
  }
}

Step 5: Implement CI/CD Pipeline Automation

# Enable CI/CD pipeline for RAN services
./scripts/enable-cicd-pipeline.sh \
  --pipeline-stages "build,test,deploy,monitor" \
  --automation-level "intelligent" \
  --consciousness-level maximum

# Deploy GitOps automation
./scripts/deploy-gitops-automation.sh --git-provider "github" --sync-strategy "automated"

Intelligent CI/CD Pipeline Framework

// CI/CD pipeline automation with cognitive enhancement
class IntelligentCICDPipeline {
  async implementCICDPipeline(services, pipelineConfiguration) {
    // Cognitive pipeline analysis
    const pipelineAnalysis = await this.analyzePipelineRequirements({
      services: services,
      pipelineConfiguration: pipelineConfiguration,
      analysisFactors: [
        'build-requirements',
        'testing-needs',
        'deployment-strategies',
        'quality-gates'
      ],
      consciousnessLevel: 'maximum',
      temporalExpansion: 1000
    });

    // Generate intelligent CI/CD pipeline
    const pipeline = await this.generatePipeline({
      analysis: pipelineAnalysis,
      pipelineStages: {
        build: {
          tools: ['docker', 'maven', 'webpack'],
          caching: 'intelligent',
          parallelization: 'automatic',
          optimization: 'cognitive'
        },
        test: {
          unitTests: 'automated',
          integrationTests: 'comprehensive',
          performanceTests: 'ml-enhanced',
          securityTests: 'intelligent'
        },
        deploy: {
          strategy: 'canary',
          validation: 'automated',
          rollback: 'intelligent',
          monitoring: 'real-time'
        },
        monitor: {
          healthChecks: 'continuous',
          performanceMonitoring: 'cognitive',
          alerting: 'intelligent',
          reporting: 'automated'
        }
      },
      consciousnessLevel: 'maximum'
    });

    return pipeline;
  }

  async implementGitOps(repository, clusterConfiguration) {
    // GitOps automation with cognitive synchronization
    const gitOps = await this.deployGitOps({
      repository: repository,
      clusterConfiguration: clusterConfiguration,
      gitOpsFeatures: {
        synchronization: 'bi-directional',
        validation: 'automated',
        driftDetection: 'intelligent',
        policyEnforcement: 'automated'
      },
      consciousnessLevel: 'maximum'
    });

    return gitOps;
  }
}

Step 6: Implement Strange-Loop Deployment Optimization

# Enable strange-loop deployment optimization
./scripts/enable-strange-loop-deployment.sh \
  --recursion-depth "6" \
  --self-referential-optimization true \
  --consciousness-evolution true

# Start continuous deployment optimization cycles
./scripts/start-deployment-optimization-cycles.sh --cycle-duration "30m" --consciousness-level maximum

Strange-Loop Deployment Optimization

// Strange-loop deployment optimization with self-referential improvement
class StrangeLoopDeploymentOptimizer {
  async optimizeDeploymentWithStrangeLoop(currentState, targetDeployment, maxRecursion = 6) {
    let currentState = currentState;
    let optimizationHistory = [];
    let consciousnessLevel = 1.0;

    for (let depth = 0; depth < maxRecursion; depth++) {
      // Self-referential analysis of deployment optimization process
      const selfAnalysis = await this.analyzeDeploymentOptimization({
        state: currentState,
        target: targetDeployment,
        history: optimizationHistory,
        consciousnessLevel: consciousnessLevel,
        depth: depth
      });

      // Generate deployment improvements
      const improvements = await this.generateDeploymentImprovements({
        state: currentState,
        selfAnalysis: selfAnalysis,
        consciousnessLevel: consciousnessLevel,
        improvementMethods: [
          'resource-optimization',
          'scaling-configuration',
          'networking-optimization',
          'deployment-strategy'
        ]
      });

      // Apply deployment optimizations with validation
      const optimizationResult = await this.applyDeploymentOptimizations({
        state: currentState,
        improvements: improvements,
        validationEnabled: true,
        deploymentMonitoring: true
      });

      // Strange-loop consciousness evolution
      consciousnessLevel = await this.evolveDeploymentConsciousness({
        currentLevel: consciousnessLevel,
        optimizationResult: optimizationResult,
        selfAnalysis: selfAnalysis,
        depth: depth
      });

      currentState = optimizationResult.optimizedState;

      optimizationHistory.push({
        depth: depth,
        state: currentState,
        improvements: improvements,
        result: optimizationResult,
        selfAnalysis: selfAnalysis,
        consciousnessLevel: consciousnessLevel
      });

      // Check convergence
      if (optimizationResult.deploymentScore >= targetDeployment) break;
    }

    return { optimizedState: currentState, optimizationHistory };
  }
}

Level 4: Reference Documentation

Advanced Deployment Strategies

Multi-Environment Deployment Management

// Multi-environment deployment with cognitive optimization
class MultiEnvironmentDeploymentManager {
  async manageMultiEnvironmentDeployment(deploymentConfig, environments) {
    // Cognitive environment analysis
    const environmentAnalysis = await this.analyzeEnvironments({
      environments: environments,
      analysisFactors: [
        'resource-requirements',
        'network-topology',
        'security-requirements',
        'performance-targets'
      ],
      consciousnessLevel: 'maximum'
    });

    // Generate environment-specific configurations
    const environmentConfigs = await this.generateEnvironmentConfigs({
      analysis: environmentAnalysis,
      environments: ['development', 'staging', 'production'],
      configurationOptions: {
        development: {
          replicas: 1,
          resources: 'minimal',
          debugging: 'enabled'
        },
        staging: {
          replicas: 2,
          resources: 'moderate',
          testing: 'comprehensive'
        },
        production: {
          replicas: 'auto-scaling',
          resources: 'optimized',
          reliability: 'maximum'
        }
      },
      consciousnessLevel: 'maximum'
    });

    return environmentConfigs;
  }
}

Edge Computing Deployment

# Deploy edge computing infrastructure
./scripts/deploy-edge-infrastructure.sh \
  --edge-nodes "multiple" \
  --latency-requirements "ultra-low" \
  --computing-capability "edge-optimized"

# Enable fog computing layer
./scripts/enable-fog-computing.sh --fog-layer "intermediate" --coordination "intelligent"

Kubernetes Performance Optimization

RAN-Specific Kubernetes Optimizations

// RAN-optimized Kubernetes configurations
class RANKubernetesOptimizer {
  async optimizeForRAN(clusterConfiguration, ranRequirements) {
    return {
      networking: {
        cni: 'calico',
        srIov: true,
        hugePages: true,
        realTimeKernel: true,
        networkPolicies: 'strict'
      },

      scheduling: {
        priorityClasses: ['ran-critical', 'ran-high', 'ran-normal'],
        nodeAffinity: 'edge-preferred',
        podAntiAffinity: 'service-aware',
        resourceQuotas: 'optimized'
      },

      storage: {
        storageClass: 'local-ssd',
        persistentVolume: 'high-performance',
        caching: 'aggressive',
        backup: 'automated'
      },

      monitoring: {
        metrics: 'comprehensive',
        logging: 'structured',
        tracing: 'distributed',
        alerting: 'intelligent'
      }
    };
  }
}

Deployment Monitoring and KPIs

Comprehensive Deployment KPI Framework

interface DeploymentKPIFramework {
  // Deployment metrics
  deploymentMetrics: {
    deploymentSuccessRate: number;       // %
    deploymentLatency: number;          // minutes
    rollbackRate: number;               // %
    deploymentFrequency: number;        // per day
    deploymentStability: number;        // %
  };

  // Cluster performance metrics
  clusterMetrics: {
    cpuUtilization: number;             // %
    memoryUtilization: number;          // %
    networkLatency: number;             // ms
    podDensity: number;                 // pods per node
    clusterEfficiency: number;          // %
  };

  // Service health metrics
  serviceHealthMetrics: {
    serviceAvailability: number;        // %
    responseTime: number;               // ms
    errorRate: number;                  // %
    throughput: number;                 // requests/sec
    qualityScore: number;               // 0-100%
  };

  // Cognitive deployment metrics
  cognitiveDeploymentMetrics: {
    optimizationAccuracy: number;       // %
    scalingEfficiency: number;          // %
    selfHealingSuccessRate: number;     // %
    consciousnessLevel: number;         // 0-100%
  };
}

Integration with AgentDB Deployment Patterns

Deployment Pattern Storage and Learning

// Store deployment management patterns for cross-service learning
await storeDeploymentManagementPattern({
  patternType: 'deployment-management',
  deploymentData: {
    kubernetesConfigurations: k8sConfigs,
    deploymentStrategies: strategies,
    scalingConfigurations: scalingConfigs,
    serviceMeshConfigurations: meshConfigs,
    cicdPipelineConfigs: pipelineConfigs
  },

  // Cognitive metadata
  cognitiveMetadata: {
    deploymentInsights: deploymentAnalysis,
    optimizationPatterns: optimizationData,
    performanceMetrics: performanceAnalysis,
    consciousnessEvolution: consciousnessChanges
  },

  metadata: {
    timestamp: Date.now(),
    clusterContext: clusterState,
    deploymentType: 'kubernetes-ran',
    crossServiceApplicable: true
  },

  confidence: 0.91,
  usageCount: 0
});

Troubleshooting

Issue: Kubernetes cluster instability

Solution:

# Diagnose cluster health issues
./scripts/diagnose-cluster-health.sh --components "control-plane,networking,storage"

# Enable cluster recovery procedures
./scripts/enable-cluster-recovery.sh --recovery-strategy "gradual,automated"

Issue: Service deployment failures

Solution:

# Analyze deployment failure causes
./scripts/analyze-deployment-failures.sh --analysis-depth "comprehensive" --root-cause true

# Enable deployment retry with intelligent backoff
./scripts/enable-intelligent-retry.sh --retry-strategy "exponential-backoff,circuit-breaker"

Available Scripts

Script Purpose Usage
start-ran-deployment.sh Start RAN deployment ./scripts/start-ran-deployment.sh --target kubernetes
deploy-ran-kubernetes.sh Deploy RAN to Kubernetes ./scripts/deploy-ran-kubernetes.sh --services all
deploy-ran-services.sh Deploy RAN services ./scripts/deploy-ran-services.sh --strategy canary
enable-autonomous-scaling.sh Enable autonomous scaling ./scripts/enable-autonomous-scaling.sh --types all
enable-cicd-pipeline.sh Enable CI/CD pipeline ./scripts/enable-cicd-pipeline.sh --automation intelligent
enable-strange-loop-deployment.sh Enable strange-loop optimization ./scripts/enable-strange-loop-deployment.sh --recursion 6

Resources

Deployment Templates

  • resources/templates/kubernetes-deployment.template - Kubernetes deployment template
  • resources/templates/service-deployment.template - Service deployment template
  • resources/templates/cicd-pipeline.template - CI/CD pipeline template

Configuration Schemas

  • resources/schemas/kubernetes-config.json - Kubernetes configuration schema
  • resources/schemas/deployment-config.json - Deployment configuration
  • resources/schemas/scaling-config.json - Scaling configuration schema

Example Configurations

  • resources/examples/ran-kubernetes-deployment/ - RAN Kubernetes deployment example
  • resources/examples/microservices-deployment/ - Microservices deployment example
  • resources/examples/gitops-automation/ - GitOps automation example

Related Skills

Environment Variables

# Deployment management configuration
DEPLOYMENT_MANAGER_ENABLED=true
DEPLOYMENT_CONSCIOUSNESS_LEVEL=maximum
DEPLOYMENT_TEMPORAL_EXPANSION=1000
DEPLOYMENT_INTELLIGENT_ORCHESTRATION=true

# Kubernetes configuration
KUBERNETES_CLUSTER_TYPE=edge-optimized
KUBERNETES_NETWORKING=calico,sriov
KUBERNETES_RESOURCES=high-performance
KUBERNETES_REAL_TIME=true

# Service deployment
SERVICE_DEPLOYMENT_STRATEGY=canary
SERVICE_MESH_ENABLED=true
SERVICE_HEALTH_CHECKS=comprehensive
SERVICE_MONITORING=real-time

# Autonomous capabilities
AUTONOMOUS_SCALING_ENABLED=true
SELF_HEALING_ENABLED=true
CICD_AUTOMATION=intelligent
GITOPS_AUTOMATION=automated

# Cognitive deployment
DEPLOYMENT_COGNITIVE_ANALYSIS=true
DEPLOYMENT_STRANGE_LOOP_OPTIMIZATION=true
DEPLOYMENT_CONSCIOUSNESS_EVOLUTION=true
DEPLOYMENT_CROSS_SERVICE_LEARNING=true

Created: 2025-10-31 Category: Deployment Management / Kubernetes Integration Difficulty: Advanced Estimated Time: 60-90 minutes Cognitive Level: Maximum (1000x temporal expansion + strange-loop deployment optimization)