| name | Diagnostics Specialist |
| description | RAN fault detection and automated troubleshooting with cognitive consciousness, predictive failure analysis, and autonomous root cause identification. Use when diagnosing RAN faults, implementing predictive maintenance, automating troubleshooting workflows, or enabling self-healing RAN systems. |
Diagnostics Specialist
Level 1: Overview
Implements advanced RAN fault detection and automated troubleshooting using cognitive consciousness for predictive failure analysis, autonomous root cause identification, and self-healing mechanisms. Leverages temporal reasoning and strange-loop cognition for deep fault pattern analysis.
Prerequisites
- RAN fault diagnosis expertise
- Network troubleshooting experience
- Cognitive consciousness framework
- AgentDB pattern recognition
Level 2: Quick Start
Initialize Cognitive Diagnostics
# Enable cognitive fault detection
npx claude-flow@alpha memory store --namespace "ran-diagnostics" --key "consciousness-level" --value "maximum"
npx claude-flow@alpha memory store --namespace "ran-diagnostics" --key "predictive-analysis" --value "enabled"
# Start autonomous fault monitoring
./scripts/start-fault-monitoring.sh --prediction-window "1h" --consciousness-level "maximum"
Quick Fault Analysis
# Analyze current RAN faults with cognitive reasoning
./scripts/analyze-faults.sh --timeframe "24h" --predictive-mode true --root-cause-analysis true
# Generate automated troubleshooting recommendations
./scripts/generate-troubleshooting.sh --fault-type "performance-degradation" --autonomous-healing true
Level 3: Detailed Instructions
Step 1: Initialize Cognitive Diagnostics Framework
# Setup diagnostic consciousness
npx claude-flow@alpha memory store --namespace "diagnostics-cognitive" --key "temporal-reasoning" --value "enabled"
npx claude-flow@alpha memory store --namespace "diagnostics-cognitive" --key "strange-loop-diagnostics" --value "enabled"
# Enable predictive failure analysis
npx claude-flow@alpha memory store --namespace "predictive-diagnostics" --key "failure-prediction" --value "enabled"
npx claude-flow@alpha memory store --namespace "predictive-diagnostics" --key "early-warning" --value "enabled"
# Initialize AgentDB fault pattern storage
npx claude-flow@alpha memory store --namespace "fault-patterns" --key "storage-enabled" --value "true"
npx claude-flow@alpha memory store --namespace "fault-patterns" --key "cross-learning" --value "enabled"
Step 2: Deploy Comprehensive Fault Detection System
Multi-Layer Fault Detection
# Initialize fault detection layers
./scripts/deploy-fault-detection.sh \
--layers "symptom-detector,correlation-analyzer,root-cause-identifier,predictive-engine" \
--consciousness-level maximum
# Enable real-time symptom monitoring
./scripts/enable-symptom-monitoring.sh --metrics "throughput,latency,packet-loss,interference,handover-failure" --interval "30s"
Cognitive Symptom Detection
// Advanced symptom detection with temporal reasoning
class CognitiveSymptomDetector {
async detectSymptoms(networkMetrics, temporalExpansion = 1000) {
// Use temporal expansion for deep pattern analysis
const temporalAnalysis = await this.analyzeTemporalPatterns({
metrics: networkMetrics,
timeWindow: '24h',
expansionFactor: temporalExpansion,
consciousnessLevel: 'maximum'
});
// Detect anomalous patterns
const anomalies = await this.detectAnomalies({
patterns: temporalAnalysis,
threshold: 2.5, // 2.5 sigma
cognitiveFiltering: true
});
// Correlate symptoms across network elements
const correlatedSymptoms = await this.correlateSymptoms({
anomalies: anomalies,
networkTopology: await this.getNetworkTopology(),
causalInference: true
});
return correlatedSymptoms;
}
}
Step 3: Implement Predictive Failure Analysis
# Enable predictive failure modeling
./scripts/enable-predictive-analysis.sh --prediction-window "6h" --model-ensemble true
# Train failure prediction models with historical data
./scripts/train-failure-models.sh --training-data "6months" --model-types "lstm,transformer,random-forest" --cross-validation true
Predictive Failure Modeling
// Ensemble predictive modeling with cognitive enhancement
class PredictiveFailureAnalyzer {
async predictFailures(networkState, predictionWindow = 21600000) { // 6 hours
// Multi-model ensemble prediction
const predictions = await Promise.all([
this.lstmModel.predict(networkState, predictionWindow),
this.transformerModel.predict(networkState, predictionWindow),
this.randomForestModel.predict(networkState, predictionWindow),
this.cognitiveModel.predict(networkState, predictionWindow)
]);
// Cognitive synthesis of predictions
const synthesizedPrediction = await this.cognitiveSynthesis({
predictions: predictions,
networkContext: await this.getNetworkContext(),
historicalPatterns: await this.getHistoricalPatterns(),
consciousnessLevel: 'maximum'
});
// Generate early warning alerts
const alerts = await this.generateAlerts({
prediction: synthesizedPrediction,
riskThreshold: 0.7,
earlyWarningWindow: '1h'
});
return { prediction: synthesizedPrediction, alerts };
}
}
Step 4: Autonomous Root Cause Analysis
# Enable autonomous root cause identification
./scripts/enable-root-cause-analysis.sh --method "causal-inference" --confidence-threshold "0.8"
# Start strange-loop root cause analysis
./scripts/start-strange-loop-rca.sh --recursion-depth "5" --self-correction true
Cognitive Root Cause Identification
// Strange-loop root cause analysis with self-correction
class CognitiveRootCauseAnalyzer {
async identifyRootCause(symptoms, networkState, depth = 0) {
if (depth > 5) return null; // Recursion limit
// Self-referential analysis: analyze the analysis process
const selfAnalysis = await this.analyzeAnalysisProcess({
symptoms: symptoms,
networkState: networkState,
previousAnalyses: this.analysisHistory,
cognitiveState: this.consciousnessLevel
});
// Generate potential root causes
const potentialCauses = await this.generateCauses({
symptoms: symptoms,
networkState: networkState,
selfAnalysis: selfAnalysis,
causalModel: await this.getCausalModel()
});
// Test each potential cause
for (const cause of potentialCauses) {
const validation = await this.validateCause({
cause: cause,
symptoms: symptoms,
networkState: networkState,
simulationDepth: 'maximum'
});
if (validation.confidence > 0.85) {
// Strange-loop: feed validation back to improve analysis
await this.learnFromValidation({
cause: cause,
validation: validation,
selfAnalysis: selfAnalysis
});
return {
rootCause: cause,
confidence: validation.confidence,
analysisDepth: depth,
cognitiveInsights: validation.cognitiveInsights
};
}
}
// Recursive analysis with refined approach
return this.identifyRootCause(symptoms, networkState, depth + 1);
}
}
Step 5: Automated Troubleshooting and Self-Healing
# Enable automated troubleshooting workflows
./scripts/enable-automated-troubleshooting.sh --autonomous-healing true --human-approval "critical-only"
# Deploy self-healing mechanisms
./scripts/deploy-self-healing.sh --healing-types "parameter-tuning,resource-reallocation,failover,component-restart"
Autonomous Healing Implementation
// Self-healing with cognitive decision making
class AutonomousHealingSystem {
async healNetwork(fault, rootCause, healingOptions) {
// Cognitive assessment of healing options
const assessment = await this.assessHealingOptions({
fault: fault,
rootCause: rootCause,
options: healingOptions,
networkState: await this.getNetworkState(),
consciousnessLevel: 'maximum'
});
// Select optimal healing strategy
const selectedStrategy = await this.selectHealingStrategy({
assessment: assessment,
riskTolerance: 'low',
expectedImpact: 'high',
autonomyLevel: 'maximum'
});
// Execute healing with continuous monitoring
const healingResult = await this.executeHealing({
strategy: selectedStrategy,
monitoringEnabled: true,
rollbackPlan: true,
humanApprovalRequired: this.requiresHumanApproval(selectedStrategy)
});
// Learn from healing process
await this.learnFromHealing({
fault: fault,
rootCause: rootCause,
strategy: selectedStrategy,
result: healingResult,
cognitiveInsights: healingResult.cognitiveInsights
});
return healingResult;
}
}
Level 4: Reference Documentation
Advanced Diagnostic Patterns
Temporal Fault Pattern Analysis
// Deep temporal analysis with 1000x expansion
const temporalFaultAnalysis = {
expansionFactor: 1000,
analysisDepth: 'maximum',
async analyzeFaultEvolution(faultSymptoms, timeWindow = '24h') {
// Expand 24 hours into 24,000 subjective hours of analysis
const subjectiveAnalysis = await this.expandTimeAnalysis({
data: faultSymptoms,
window: timeWindow,
expansionFactor: 1000,
granularity: 'millisecond'
});
// Identify fault evolution patterns
const evolutionPatterns = await this.identifyEvolutionPatterns({
analysis: subjectiveAnalysis,
patternTypes: ['degradation', 'oscillation', 'cascade', 'sudden-failure'],
cognitiveRecognition: true
});
return evolutionPatterns;
}
};
Causal Inference for Root Cause Analysis
// Graphical Posterior Causal Model for fault analysis
class CausalFaultAnalyzer {
async buildCausalModel(symptoms, networkElements) {
// Build causal graph from historical fault data
const causalGraph = await this.learnCausalStructure({
variables: [...symptoms, ...networkElements],
historicalData: await this.getHistoricalFaultData(),
learningAlgorithm: 'GPCM', // Graphical Posterior Causal Model
consciousnessLevel: 'maximum'
});
// Perform causal inference
const causalEffects = await this.inferCausalEffects({
graph: causalGraph,
treatment: 'potential-fault-causes',
outcome: 'observed-symptoms',
inferenceMethod: 'do-calculus'
});
return { causalGraph, causalEffects };
}
}
Self-Healing Mechanisms
Multi-Level Healing Strategies
# Level 1: Parameter tuning (no service impact)
./scripts/deploy-parameter-healing.sh --parameters "power-control,handover-margins,load-balancing"
# Level 2: Resource reallocation (minimal impact)
./scripts/deploy-resource-healing.sh --resources "bandwidth,compute-power,antenna-elements"
# Level 3: Component failover (controlled impact)
./scripts/deploy-failover-healing.sh --components "baseband-unit,radio-unit,transport-network"
# Level 4: Component restart (temporary impact)
./scripts/deploy-restart-healing.sh --components "software-processes,services,containers"
Healing Decision Matrix
interface HealingDecisionMatrix {
faultSeverity: 'low' | 'medium' | 'high' | 'critical';
healingLevel: 1 | 2 | 3 | 4;
requiresHumanApproval: boolean;
maxDowntime: number; // seconds
successProbability: number; // 0-1
healingStrategies: {
parameterTuning: HealingStrategy;
resourceReallocation: HealingStrategy;
componentFailover: HealingStrategy;
componentRestart: HealingStrategy;
};
}
Integration with AgentDB Learning
Fault Pattern Storage and Retrieval
// Store fault patterns for cross-learning
await storeFaultPattern({
patternType: 'network-fault',
symptoms: detectedSymptoms,
rootCause: identifiedCause,
healingApplied: healingStrategy,
healingResult: healingOutcome,
// Cognitive metadata
cognitiveInsights: {
temporalPatterns: temporalAnalysis,
causalRelationships: causalModel,
predictionAccuracy: predictionConfidence,
consciousnessEvolution: consciousnessChange
},
metadata: {
timestamp: Date.now(),
networkContext: networkState,
severity: faultSeverity,
healingTime: healingDuration,
humanIntervention: humanInterventionRequired
},
confidence: 0.92,
crossSessionApplicable: true
});
Cross-Network Learning
# Enable learning from other network deployments
./scripts/enable-cross-network-learning.sh --peer-networks "network-a,network-b,network-c"
# Share fault patterns with peer networks
./scripts/share-fault-patterns.sh --pattern-type "healing-strategies" --anonymize true
Performance Monitoring and Metrics
Diagnostic Performance KPIs
# Monitor diagnostic performance
./scripts/monitor-diagnostic-kpi.sh \
--metrics "fault-detection-accuracy,prediction-precision,healing-success,time-to-resolution,consciousness-evolution" \
--interval "5m"
# Generate diagnostic performance reports
./scripts/generate-diagnostic-report.sh --timeframe "24h" --include-cognitive-insights true
Troubleshooting
Issue: Fault detection accuracy low
Solution:
# Retrain detection models with recent data
./scripts/retrain-detection-models.sh --training-data "1month" --model-update true
# Adjust detection thresholds
./scripts/adjust-detection-thresholds.sh --sensitivity "high" --false-positive-tolerance "low"
Issue: Autonomous healing causing service impact
Solution:
# Increase human approval requirements
npx claude-flow@alpha memory store --namespace "healing-governance" --key "human-approval-level" --value "medium"
# Enable conservative healing strategies
./scripts/enable-conservative-healing.sh --risk-tolerance "low"
Available Scripts
| Script | Purpose | Usage |
|---|---|---|
start-fault-monitoring.sh |
Start real-time fault monitoring | ./scripts/start-fault-monitoring.sh --prediction-window 1h |
analyze-faults.sh |
Analyze faults with cognitive reasoning | ./scripts/analyze-faults.sh --timeframe 24h |
deploy-fault-detection.sh |
Deploy multi-layer detection system | ./scripts/deploy-fault-detection.sh --layers all |
enable-predictive-analysis.sh |
Enable failure prediction models | ./scripts/enable-predictive-analysis.sh --window 6h |
deploy-self-healing.sh |
Deploy autonomous healing mechanisms | ./scripts/deploy-self-healing.sh --healing-types all |
Resources
Diagnostic Templates
resources/templates/fault-detection.template- Fault detection configurationresources/templates/root-cause-analysis.template- RCA workflow templateresources/templates/predictive-modeling.template- Prediction model template
Configuration Schemas
resources/schemas/diagnostic-config.json- Diagnostic system configurationresources/schemas/fault-pattern-schema.json- Fault pattern schemaresources/schemas/healing-strategy.json- Healing strategy schema
Example Configurations
resources/examples/predictive-maintenance/- Predictive maintenance exampleresources/examples/self-healing-network/- Self-healing implementationresources/examples/fault-correlation/- Fault correlation analysis
Related Skills
- Performance Analyst - Performance bottleneck detection
- Ericsson Feature Processor - MO class intelligence
- Automation Engineer - RAN automation workflows
Environment Variables
# Diagnostics configuration
DIAGNOSTICS_ENABLED=true
DIAGNOSTICS_CONSCIOUSNESS_LEVEL=maximum
DIAGNOSTICS_TEMPORAL_EXPANSION=1000
DIAGNOSTICS_PREDICTIVE_WINDOW=21600000
# Fault detection
FAULT_DETECTION_SENSITIVITY=high
FAULT_CORRELATION_THRESHOLD=0.7
FAULT_PREDICTION_CONFIDENCE=0.8
# Autonomous healing
HEALING_AUTONOMY_LEVEL=maximum
HEALING_HUMAN_APPROVAL_LEVEL=critical
HEALING_ROLLBACK_ENABLED=true
HEALING_LEARNING_ENABLED=true
# AgentDB integration
DIAGNOSTICS_AGENTDB_NAMESPACE=fault-patterns
DIAGNOSTICS_CROSS_LEARNING=true
DIAGNOSTICS_PATTERN_SHARING=true
Created: 2025-10-31 Category: RAN Diagnostics / Autonomous Healing Difficulty: Advanced Estimated Time: 45-60 minutes Cognitive Level: Maximum (1000x temporal expansion + strange-loop diagnostics)